CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PCD刀具超声振动辅助切削TiCp/TC4材料表面缺陷

宦海祥 罗韬 徐文强 朱池磊

宦海祥, 罗韬, 徐文强, 朱池磊. PCD刀具超声振动辅助切削TiCp/TC4材料表面缺陷[J]. 金刚石与磨料磨具工程, 2023, 43(6): 672-683. doi: 10.13394/j.cnki.jgszz.2023.0154
引用本文: 宦海祥, 罗韬, 徐文强, 朱池磊. PCD刀具超声振动辅助切削TiCp/TC4材料表面缺陷[J]. 金刚石与磨料磨具工程, 2023, 43(6): 672-683. doi: 10.13394/j.cnki.jgszz.2023.0154
HUAN Haixiang, LUO Tao, XU Wenqiang, ZHU Chilei. Surface defects in ultrasonic vibration assisted cutting of TiCp/TC4 with PCD tool[J]. Diamond & Abrasives Engineering, 2023, 43(6): 672-683. doi: 10.13394/j.cnki.jgszz.2023.0154
Citation: HUAN Haixiang, LUO Tao, XU Wenqiang, ZHU Chilei. Surface defects in ultrasonic vibration assisted cutting of TiCp/TC4 with PCD tool[J]. Diamond & Abrasives Engineering, 2023, 43(6): 672-683. doi: 10.13394/j.cnki.jgszz.2023.0154

PCD刀具超声振动辅助切削TiCp/TC4材料表面缺陷

doi: 10.13394/j.cnki.jgszz.2023.0154
详细信息
    作者简介:

    宦海祥,男,1981年生,博士、副教授、硕士生导师。主要研究方向:先进制造技术、高效精密加工技术。E-mail:hhxjs@126.com

  • 中图分类号: TG71;TG58

Surface defects in ultrasonic vibration assisted cutting of TiCp/TC4 with PCD tool

  • 摘要:

    研究微观角度下PCD刀具超声振动辅助切削TiCp/TC4时,超声振动对材料表面缺陷的影响。基于ABAQUS/Explicit有限元软件,建立PTMCs二维切削微观非均质模型,开展不同体积分数下的多颗粒切削仿真;并采用仿真和实验相结合的方法,分析切削速度对切削温度变化的影响规律,阐述TiCp/TC4在切削过程中的颗粒受力破碎过程,讨论同体积分数的TiCp/TC4切削表面缺陷的表现形式。结果表明:超声振动切削时,切削温度始终较低,TiCp/TC4表面缺陷表现形式多为颗粒切断和颗粒突起;且超声振动能有效阻断颗粒与基体间的应力持续传递,使应力优先在颗粒间传递,减小了基体变形,促使颗粒破碎,提升材料表面加工质量,同时验证实验结果与仿真结果相符。

     

  • 图  1  二维切削仿真模型

    Figure  1.  Two-dimensional cutting simulation model

    图  2  VMC850B加工中心及场发射扫描电子显微镜

    Figure  2.  VMC850B machining center and field emission scanning electron microscope

    图  3  实验平台示意图

    Figure  3.  Experimental platform diagram

    图  4  超声振动切削与传统切削温度信号变化曲线

    Figure  4.  Ultrasonic vibration cutting and traditional cutting temperature signal change curve

    图  5  切削速度对切削温度影响

    Figure  5.  Effect of cutting speed on cutting temperature

    图  6  切削速度对切削温度影响的对比验证

    Figure  6.  Comparative verification of the effect of cutting speed on cutting temperature

    图  7  颗粒体积分数为8% TiCp/TC4的已加工表面

    Figure  7.  Finished surface of particle volume fraction 8% TiCp/TC4

    图  8  传统切削

    Figure  8.  Traditional cutting

    图  9  超声振动切削

    Figure  9.  Ultrasonic vibration cutting

    图  10  颗粒体积分数为15%TiCp/TC4的已加工表面

    Figure  10.  Finished surface of particle volume fraction 15%PTiCp/TC4

    图  11  不同切削速度下的TiCp/TC4表面形貌

    Figure  11.  Surface morphologies of TiCp/TC4 with different cutting speeds

    图  12  传统切削

    Figure  12.  Traditional cutting

    图  13  超声振动切削

    Figure  13.  Ultrasonic vibration cutting

    图  14  典型表面缺陷微观形貌图

    Figure  14.  Microtopography of typical surface defects

    图  15  仿真中颗粒应力及颗粒团簇SEM图片

    Figure  15.  SEM images of particle stress and particle clusters in simulation

    图  16  颗粒间应力传递演化情形一

    Figure  16.  Intergranular stress transfer evolution case I

    图  17  颗粒间应力传递演化情形二

    Figure  17.  Interparticle stress transfer evolution case II

    表  1  工件材料的性能参数

    Table  1.   Performance parameters of the workpiece material

    材料性能TC4TiC
    密度ρ / (kg·m−3) 4510 4390
    泊松比 μ 0.34 0.18
    弹性模量 E / GPa 110 470
    导热系数 k / [W·(m·K)−1] 5.708 17.200
    比热容 c / [J·(kg·K)−1] 457.2 568.0
    下载: 导出CSV

    表  2  切削参数

    Table  2.   Cutting parameters

    切削参数数值
    切削速度 vs / (m·min−1) 100
    每齿进给量 f1 / (mm·z−1)0.08
    切削深度 ap / mm 3
    振幅 A / μm 3
    超声频率 f / kHz 20
    下载: 导出CSV
  • [1] MA Z Y, TJONGS C, GEN L. In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process [J]. Scripta Materialia,2000,42(4):367-373. doi: 10.1016/S1359-6462(99)00354-1
    [2] NI D R, GENG L, ZHANG J, et al. Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti-B4C system [J]. Scripta Materialia,2006,55(5):429-432. doi: 10.1016/j.scriptamat.2006.05.024
    [3] LU W, ZHANG G, ZHANG X, et al. Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique [J]. Journal of Alloys and Compounds,2001,327(1):240-247.
    [4] 韩远飞, 邱培坤, 孙相龙, 等. 非连续颗粒增强钛基复合材料制备技术与研究进展 [J]. 航空制造技术,2016,510(15):62-74.

    HAN Yuanfei, QIU Peikun, SUN Xianglong, et al. Progress and fabrication technology on discontinuously reinforced titanium matrix composites [J]. Aeronautical Manufacturing Technology,2016,510(15):62-74.
    [5] 黄陆军, 耿林. 非连续增强钛基复合材料研究进展 [J]. 航空材料学报,2014,34(4):126-138.

    HUANG Lujun, GENG Lin. Progress on discontinuously reinforced titanium matrix composites [J]. Journal of Aeronautical Materials,2014,34(4):126-138.
    [6] 吕维洁. 原位自生钛基复合材料研究综述 [J]. 中国材料进展,2010,9(4):41-48.

    LU Weijie. An overview on the research of in-situ titanium matrix composites [J]. Materials China,2010,9(4):41-48.
    [7] 赵波. 超声加工技术的研究现状和发展方向简介 [J]. 金刚石与磨料磨具工程,2020,40(1):1-4.

    ZHAO Bo. The research status and development direction of ultrasonic machining technology are introduced [J]. Diamond & Abrasives Engineering,2020,40(1):1-4.
    [8] ABD HALIM N F H, ASCROFT H, BARNES S. Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon fibre reinforced plastic (CFRP) [J]. Procedia Engineering,2017,184:185-191. doi: 10.1016/j.proeng.2017.04.084
    [9] BREHL D E, DOW T A. Review of vibration-assisted machining [J]. Precision engineering,2008,32(3):153-172. doi: 10.1016/j.precisioneng.2007.08.003
    [10] ZHANG J, CUI T, GE C, et al. Review of micro/nano machining by utilizing elliptical vibration cutting [J]. International Journal of Machine Tools and Manufacture,2016,106:109-126. doi: 10.1016/j.ijmachtools.2016.04.008
    [11] MAUROTTO A, MUHAMMAD R, ROY A, et al. Enhanced ultrasonically assisted turning of a β-titanium alloy [J]. Ultrasonics,2013,53(7):1242-1250. doi: 10.1016/j.ultras.2013.03.006
    [12] TABATABAEI S, BEHBAHANI S, MIRIAN S. Analysis of ultrasonic assisted machining (UAM) on regenerative chatter in turning [J]. Journal of Materials Processing Technology,2013,213(3):418-425. doi: 10.1016/j.jmatprotec.2012.09.018
    [13] NATH C, RAHMAN M, NEO K S. Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting [J]. International Journal of Machine Tools and Manufacture,2009,49(14):1089-1095. doi: 10.1016/j.ijmachtools.2009.07.006
    [14] 牛秋林, 高航, 张深圳, 等. 超声振动辅助铣削SiCp/Al复合材料表面质量与切屑形貌实验研究 [J]. 工具技术,2022,56(4):12-17.

    NIU Qiulin, GAO Hang, ZHANG Shenzhen, et al. Ultrasonic vibration assisted milling SiCp/Al experimental study on surface quality and chip morphology of composite materials [J]. Tool Engineering,2022,56(4):12-17.
    [15] 马超, 张建华, 陶国灿. 超声振动辅助铣削加工钛合金表面摩擦磨损性能研究 [J]. 表面技术,2017,46(8):115-119.

    MA Chao, ZHANG Jianhua, TAO Guocan. Study on surface friction and wear properties of titanium alloy in ultrasonic vibration assisted milling [J]. Surface Technology,2017,46(8):115-119.
    [16] 高泽, 张德远, 李哲, 等. 高速超声椭圆振动铣削腹板表面质量研究 [J]. 机械工程学报,2019,55(7):249-256. doi: 10.3901/JME.2019.07.249

    GAO Ze, ZHANG Deyuan, LI Zhe, et al. Research on surface quality of titanium alloy webs via high-speed ultrasonic elliptical vibration milling [J]. Journal of Mechanical Engineering,2019,55(7):249-256. doi: 10.3901/JME.2019.07.249
    [17] ABAQUS Inc. Abaqus/CAE user’s guide 6.14 [EB/OL]. [2023-06-15]. http://130.149.89.49:2080/v6.14/index.html.
    [18] 李征, 刘斌, 丁文锋, 等. 颗粒增强钛基复合材料磨削试验与仿真研究 [J]. 航空制造技术,2023,66(05):63-67.

    LI Zheng, LIU Bin, DING Wenfeng, et al. Grinding test and simulation study of particle reinforced titanium matrix composites [J]. Aeronautical Manufacturing Technology,2023,66(05):63-67.
    [19] ZHOU L, HUANG T S, WANG D, et al. Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools [J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(5-8).
    [20] CHEN G, REN C, YANG X, et al. Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model [J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(9-12).
    [21] SHUI X, ZHANG Y, WU Q. Mesoscopic model for SiCP/Al composites and simulation on the cutting process [J]. Applied Mechanics and Materials, 2014, 2943(487-487).
    [22] 武永祥. SiCp/Al复合材料切削仿真研究与实验验证 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    WU Yongxiang. SiCp/Al simulation research and experimental verification of composite cutting [D]. Harbin: Harbin Institute of Technology, 2017.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  198
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-08-25
  • 录用日期:  2023-10-26
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回