CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石滚轮轮廓圆度误差在线判别

赵华东 何鸿辉 朱振伟 周帅康 刘畅

赵华东, 何鸿辉, 朱振伟, 周帅康, 刘畅. 金刚石滚轮轮廓圆度误差在线判别[J]. 金刚石与磨料磨具工程, 2024, 44(4): 518-527. doi: 10.13394/j.cnki.jgszz.2023.0148
引用本文: 赵华东, 何鸿辉, 朱振伟, 周帅康, 刘畅. 金刚石滚轮轮廓圆度误差在线判别[J]. 金刚石与磨料磨具工程, 2024, 44(4): 518-527. doi: 10.13394/j.cnki.jgszz.2023.0148
ZHAO Huadong, HE Honghui, ZHU Zhenwei, ZHOU Shuaikang, LIU Chang. Online recognition of contour error of diamond roller[J]. Diamond & Abrasives Engineering, 2024, 44(4): 518-527. doi: 10.13394/j.cnki.jgszz.2023.0148
Citation: ZHAO Huadong, HE Honghui, ZHU Zhenwei, ZHOU Shuaikang, LIU Chang. Online recognition of contour error of diamond roller[J]. Diamond & Abrasives Engineering, 2024, 44(4): 518-527. doi: 10.13394/j.cnki.jgszz.2023.0148

金刚石滚轮轮廓圆度误差在线判别

doi: 10.13394/j.cnki.jgszz.2023.0148
详细信息
    作者简介:

    赵华东,男,1978年生,教授、博士生导师。主要研究方向:智能制造。E-mail:82662906@qq.com

  • 中图分类号: TQ164; TG58; TG74

Online recognition of contour error of diamond roller

  • 摘要:

    金刚石滚轮形面的修形技术是制造金刚石滚轮的关键技术之一,常采用金刚石砂轮磨削法对其进行精密修形,修形后的轮廓圆度误差是考量滚轮修形合格与否的重要指标。目前的轮廓圆度检测方法是人工停机取下滚轮并放置于轮廓仪上进行,极大地增加了滚轮制作的时间和成本。为此,对在五轴加工机床上的金刚石滚轮,沿其轮廓面横向磨削修形时产生的振动信号,提出基于小波包系数和随机森林的在线检测方法并对其轮廓修形状态进行识别,在修形进行状态时的识别准确率为93.3%,具有实际应用价值。

     

  • 图  1  振动信号采集过程

    Figure  1.  Vibration signal acquisition process

    图  2  金刚石滚轮

    Figure  2.  Diamond roller

    图  3  金刚石滚轮部分轮廓设计要求

    Figure  3.  The design requirements for the outline of the diamond roller

    图  4  轮廓测量仪

    Figure  4.  Profile measuring instrument

    图  5  轮廓测量结果

    Figure  5.  Contour measurement result

    图  6  修形加工平台

    Figure  6.  Shapping processing platform

    图  7  轮廓修形示意图

    Figure  7.  Contour shipping diagram

    图  8  XYZ轴的振动信号

    Figure  8.  X, Y and Z axis vibration signals

    图  9  粗修时X轴的振动信号

    Figure  9.  Vibration signal of X-axis during rough trimming

    图  10  粗修时X轴的振动信号频谱

    Figure  10.  Vibration signal spectrum of X-axis during rough trimming

    图  11  粗修时Y轴的振动信号

    Figure  11.  Vibration signal of Y-axis during rough trimming

    图  12  粗修时Y轴的振动信号频谱

    Figure  12.  Vibration signal spectrum of Y-axis during rough trimming

    图  13  精修时X轴的振动信号

    Figure  13.  Vibration signal of X-axis during finishing trimming

    图  14  精修时X轴的振动信号频谱

    Figure  14.  Vibration signal spectrum of X-axis during precision trimming

    图  15  精修时Y轴的振动信号

    Figure  15.  Vibration signal of Y-axis during finishing trimming

    图  16  精修时Y轴的振动信号频谱

    Figure  16.  Vibration signal spectrum of Y-axis during precision trimming

    图  17  修整完成时X轴的振动信号

    Figure  17.  Vibration signal of X-axis at the completion of trimming

    图  18  修整完成时X轴的振动信号频谱

    Figure  18.  Vibration signal spectrum of X-axis at the completion of trimming

    图  19  修整完成时Y轴的振动信号

    Figure  19.  Vibration signal of Y-axis at the completion of trimming

    图  20  修整完成时Y轴的振动信号频谱

    Figure  20.  Vibration signal spectrum of Y-axis at the completion of trimming

    图  21  小波包树状分解图

    Figure  21.  Wavelet packet tree decomposition graph

    图  22  X轴振动信号的均方根

    Figure  22.  Root mean square of X-axis vibration signal

    图  23  Y轴振动信号的均方根

    Figure  23.  Root mean square of Y-axis vibration signal

    图  24  X轴振动信号的方差

    Figure  24.  Variance of X-axis vibration signal

    图  25  Y轴振动信号的方差

    Figure  25.  Variance of Y-axis vibration signal

    图  26  样本预测情况

    Figure  26.  Sample prediction situation

    表  1  修形参数

    Table  1.   Trimming parameters

    参数类型或取值
    滚轮直径 $ {D}_{1}\;\mathrm{m}\mathrm{m} $180
    滚轮轮廓面CVD金刚石覆盖率P / %50
    CVD金刚石的长 (mm)× 高 (mm) × 厚 (mm)4.2 × 2.4 × 0.8
    滚轮CVD层宽度 $ {W}_{1}\;/\;\mathrm{ }\mathrm{m}\mathrm{m} $4.2
    滚轮结合剂J
    砂轮直径 $ {D}_{2}\;/\;\mathrm{ }\mathrm{m}\mathrm{m} $200
    砂轮中金刚石粒度代号120/140
    砂轮磨削层宽度 $ {W}_{2}\;/\;\mathrm{ }\mathrm{m}\mathrm{m} $5
    砂轮中金刚石浓度 $ C\;/\;\mathrm{\%} $120
    砂轮结合剂V
    砂轮转速 $ {n}_{1}\;/\;\mathrm{ }(\mathrm{r}·{\mathrm{m}\mathrm{i}\mathrm{n}}^{-1}) $1 000
    滚轮转速 $ {n}_{2}\;/\;\mathrm{ }(\mathrm{r}·{\mathrm{m}\mathrm{i}\mathrm{n}}^{-1}) $60
    纵向走刀转速 n3 / $ (\mathrm{r}·{\mathrm{m}\mathrm{i}\mathrm{n}}^{-1}) $6.8
    砂轮进给量 $s\;/\;\text{μ} {\rm{m}}$4
    下载: 导出CSV

    表  2  样本圆度误差值

    Table  2.   Sample roundness error value

    序号圆度误差值 δ / μm类别序号圆度误差值 δ / μm类别序号圆度误差值 δ / μm类别
    130.611019.822011.93
    225.111028.622021.83
    ···························
    9919.811999.622991.93
    10023.212007.323001.93
    下载: 导出CSV

    表  3  小波包系数均方根值(V)

    Table  3.   Root mean square values of wavelet packet coefficients(V)

    序号(3,0)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(3,7)
    10.190050.103570.057470.076360.029900.040770.031060.02824
    20.119710.058440.031350.041320.016100.022640.016410.01468
    30.176620.069180.039550.057300.019940.030440.025030.02581
    ···························
    2980.041740.029490.017740.041620.009080.023110.012750.01649
    2990.044350.029500.019100.043230.009790.024050.013610.01725
    3000.043700.031230.019610.045950.009930.025650.014350.01772
    下载: 导出CSV

    表  4  小波包系数方差值(V2

    Table  4.   Variance values of wavelet packet coefficients(V2

    序号(3,0)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(3,7)
    10.035800.010730.003300.005830.000890.001660.000960.00080
    20.013710.003420.000980.001710.000260.000510.000270.00022
    30.031180.004790.001570.003280.000400.000930.000630.00067
    ···························
    2980.001660.001470.000410.003230.000110.001050.000160.00026
    2990.001460.001280.000410.002680.000110.000850.000190.00033
    3000.001910.002040.000580.004870.000170.001600.000180.00024
    下载: 导出CSV
  • [1] 宋月清, 刘一波. 人造金刚石工具手册 [M]. 北京: 冶金工业出版社, 2014.

    SONG Yueqing, LIU Yibo. Handbook of synthetic diamond tools [M]. Beijing: Metallurgical Industry Press, 2014.
    [2] 蔡恩磊, 王立平, 孙丽荣, 等. 基于多过程信号的轧辊磨削表面粗糙度智能预测 [J]. 机电工程,2022,39(10):1462-1469.

    CAI Enlei, WANG Liping, SUN Lirong, et al. Intelligent prediction of surface roughness in roller grinding based on multi-process signals [J]. Mechanical and Electrical Engineering,2022,39(10):1462-1469.
    [3] 王素华, 徐小健, 于飞, 等. 基于振动特征优选和极限学习机的滚动轴承故障诊断 [J]. 深圳大学学报(理工版),2023,40(4):504-512.

    WANG Suhua, XU Xiaojian, YU Fei, et al. Fault diagnosis of rolling bearing based on vibration feature optimization and extreme learning machine [J]. Journal of Shenzhen University (Science and Engineering),2023,40(4):504-512.
    [4] 迟玉伦, 吴耀宇, 江欢, 等. 基于模糊神经网络与主成分分析的磨削表面粗糙度在线预测 [J]. 计量学报,2022,43(11):1389-1397. doi: 10.3969/j.issn.1000-1158.2022.11.01

    CHI Yulun, WU Yaoyu, JIANG Huan, et al. On-line prediction of grinding surface roughness based on fuzzy neural network and principal component analysis [J]. Acta Metrologica Sinica,2022,43(11):1389-1397. doi: 10.3969/j.issn.1000-1158.2022.11.01
    [5] 郭力, 龙华, 王艺, 等. 基于卷积神经网络对磨削表面粗糙度声发射智能预测 [J]. 精密制造与自动化,2022(4):9-13.

    GUO Li, LONG Hua, WANG Yi, et al. Acoustic emission intelligent prediction of grinding surface roughness based on convolution neural network [J]. Precision Manufacturing and Automation,2022(4):9-13.
    [6] 黄双云, 武利冲. 基于小波包分析和BP神经网络的滚动轴承故障诊断研究 [J]. 煤矿机械,2023,44(7):157-160.

    HUANG Shuangyun, WU Lichong. Research on rolling bearing fault diagnosis based on wavelet packet analysis and BP neural network [J]. Coal Mine Machinery,2023,44(7):157-160.
    [7] 杜福嘉, 黄康, 郭跃楠. 小波包和模糊熵特征融合的轴承故障诊断 [J]. 机械设计与制造, 2023(10): 285-290.

    DU Fujia, HUANG Kang, GUO Yuenan. Bearing fault diagnosis based on feature fusion of wavelet packet and fuzzy entropy [J]. Machinery Design and Manufacturing, 2023(10): 285-290.
    [8] PLAZA E G, LOPEZ P J N. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations [J]. Mechanical Systems and Signal Processing,2018,98:902-919. doi: 10.1016/j.ymssp.2017.05.028
    [9] XIAO J Q, LUO Z H. Time-frequency characteristics of vibration signals analysis for large instantaneous impact mill rolling based on wavelet packet [J]. Advanced Materials Research,2013(834/835/836):1061-1064.
    [10] 全国磨料磨具标准化技术委员会. 超硬磨料制品 金刚石修整滚轮: JB/T 10040-2017 [S]. 北京: 机械工业出版社, 2017.

    National Abrasive Standardization Technical Committee. Superabrasive products: Diamond dressing rollers: JB/T 10040-2017 [S]. Beijing: China Machine Press, 2017.
    [11] 孔玲军. MATLAB小波分析超级学习手[M]. 北京: 人民邮电出版社, 2014.

    KONG Lingjun. MATLAB super learning handbook for wavelet analysis [M]. Beijing: People's Posts and Telecommunications Press, 2014.
    [12] 葛飞, 卫鑫, 董鹏, 等. 基于小波包能量变化率的钢桁架损伤识别研究 [J]. 天津城建大学学报,2023,29(2):101-107. doi: 10.1007/s12209-022-00349-4

    GE Fei, WEI Xin, DONG Peng, et al. Research on damage identification of steel truss based on wavelet packet energy change rate [J]. Journal of Tianjin Chengjian University,2023,29(2):101-107. doi: 10.1007/s12209-022-00349-4
    [13] Araújo L R R, Ariya S, Keuton D A, et al. Wavelet-based estimation method for online condition monitoring of dc-link capacitors of distributed energy resources [J]. International Journal of Electrical Power and Energy Systems, 2023, 151(卷): 109141.

    ARAÚJO L R R, ARIYA S, KEUTON D A, et al. Wavelet-based estimation method for online condition monitoring of Dc-link capacitors of distributed energy resources [J]. International Journal of Electrical Power and Energy Systems,2023,151:109141.
    [14] 王贝伦. 机器学习 [M]. 南京: 东南大学出版社, 2021.

    WANG Beilun. Machine learning [M]. Nanjing: Southeast University Press, 2021.
  • 加载中
图(26) / 表(4)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  132
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-10-18
  • 录用日期:  2023-11-06
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回