CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石涂层刀具高速铣铝合金平面切削毛刺研究

邵伟平 张韬 李家成 莫小青

邵伟平, 张韬, 李家成, 莫小青. 金刚石涂层刀具高速铣铝合金平面切削毛刺研究[J]. 金刚石与磨料磨具工程, 2024, 44(2): 221-227. doi: 10.13394/j.cnki.jgszz.2023.0130
引用本文: 邵伟平, 张韬, 李家成, 莫小青. 金刚石涂层刀具高速铣铝合金平面切削毛刺研究[J]. 金刚石与磨料磨具工程, 2024, 44(2): 221-227. doi: 10.13394/j.cnki.jgszz.2023.0130
SHAO Weiping, ZHANG Tao, LI Jiacheng, MO Xiaoqing. Research on cutting burrs in high speed milling of aluminum alloy plane with diamond coated tools[J]. Diamond & Abrasives Engineering, 2024, 44(2): 221-227. doi: 10.13394/j.cnki.jgszz.2023.0130
Citation: SHAO Weiping, ZHANG Tao, LI Jiacheng, MO Xiaoqing. Research on cutting burrs in high speed milling of aluminum alloy plane with diamond coated tools[J]. Diamond & Abrasives Engineering, 2024, 44(2): 221-227. doi: 10.13394/j.cnki.jgszz.2023.0130

金刚石涂层刀具高速铣铝合金平面切削毛刺研究

doi: 10.13394/j.cnki.jgszz.2023.0130
基金项目: 江苏省自然科学基金(BK20201142)。
详细信息
    作者简介:

    邵伟平,男,1973年生,高级实验师。主要研究方向:数控技术与切削加工。E-mail:swp523@sina.com

  • 中图分类号: TG58;TG714;TG544

Research on cutting burrs in high speed milling of aluminum alloy plane with diamond coated tools

  • 摘要: 采用热丝 CVD 法制备纳米与微米金刚石薄膜涂层刀具,利用场发射扫描电镜表征其薄膜表面形貌。用已制备的 CVD 金刚石涂层刀具,在无润滑干切条件下高速顺、逆端铣铝合金平面,研究CVD金刚石涂层刀具切削时的棱边毛刺特点与大小;并对纳米金刚石涂层刀具高速顺铣切削工艺参数进行正交试验,探究取得少无切削毛刺的切削参数与切削工艺。结果表明:工件铣削后棱边毛刺分布不均匀,顺铣毛刺稀疏,尺寸较小,其中纳米金刚石涂层刀具顺铣棱边毛刺高度平均值为32.08 μm,仅为微米金刚石涂层刀具顺铣毛刺高度的46.5%。纳米金刚石涂层刀具高速顺铣平面,对棱边毛刺影响最大的是vc,其次为vfae的影响最小,最优参数组合为ae=4 mm、vf=2 000 mm/min、vc=400 m/min,铣削后毛刺高度平均值为21.29 μm。当金刚石涂层刀具端铣铝合金平面时,为取得较小的棱边毛刺,优选纳米金刚石涂层刀具,采用顺铣棱边的切削方式与切削工艺,以及相应的高速切削参数。

     

  • 图  1  金刚石涂层刀具表面形貌图

    Figure  1.  Surface topography of diamond coated tools

    图  2  MCD与NCD涂层刀具顺、逆端铣工件棱边显微图像

    Figure  2.  Micro image of edges of MCD and NCD coated cutting tools for forward and backward end milling of workpieces

    图  3  MCD与NCD涂层刀具切削毛刺高度值对比图

    Figure  3.  Comparison of cutting burr height values between MCD and NCD coated tools

    图  4  平面铣削工艺路径规划图

    Figure  4.  Planar milling process path planning diagram

    表  1  切削毛刺正交实验因素水平表

    Table  1.   orthogonal experimental factors for cutting burrs

    水平 因素
    径向切削深度
    ae/ mm
    A
    进给速度
    vf / (mm·min−1)
    B
    切削速度
    vc / (m·min−1)
    C
    1 3 1 000 300
    2 4 2 000 400
    3 5 3 000 500
    下载: 导出CSV

    表  2  切削毛刺正交实验组合及结果

    Table  2.   Orthogonal test combination and results for cutting burrs

    试验
    编号
    参数组合 毛刺高度h / μm 毛刺平均高
    度$\overline h $ / μm
    1 A1B1C1 104.82,84.83,48.88,80.75,97.82 83.42
    2 A1B2C2 24.48,19.63,18.72,23.24,24.23 22.06
    3 A1B3C3 31.71,95.31,112.04,99.39,90.55 85.80
    4 A2B1C2 34.57,54.07,24.44,44.12,46.43 34.57
    5 A2B2C3 29.33,24.59,26.84,34.71,28.88 28.87
    6 A2B3C1 46.67,70.63,60.61,50.08,65.26 58.65
    7 A3B1C3 36.72,53.08,151.54,46.54,72.32 72.04
    8 A3B2C1 49.23,88.61,53.71,73.37,65.13 66.01
    9 A3B3C2 48.48,65.55,60.37,51.41,61.08 57.38
    下载: 导出CSV

    表  3  各切削参数影响的毛刺高度均值以及极差R

    Table  3.   The average and range R values of burr height affected by various cutting parameters

    项目 取值
    径向切削深度
    ae / mm
    A
    供给速度
    vf / (mm·min−1)
    B
    铣削速度
    vc / (m·min−1)
    C
    均值t1 63.76 63.34 69.36
    均值t2 40.70 38.98 38.00
    均值t3 65.14 67.28 62.24
    极差R 24.44 28.30 31.36
    下载: 导出CSV
  • [1] 秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展 [J]. 中国激光,2021,48(14):15-31.

    QIN Yanli, SUN Bohui, ZHANG Hao, et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in the aerospace field [J]. Chinese Journal of Lasers,2021,48(14):15-31
    [2] 陆家朋. 金属切削加工中边缘毛刺形成机理及尺寸预报理论研究[D]. 长沙: 湖南大学, 2016.

    LU Jiapeng. Study on the burr formation Mechanism and sizes prediction theory in Cutting metal materials[D]. Changsha: Hunan University, 2016.
    [3] 高可, 金成哲, 杨梓荆. 微细铣削7075铝合金的毛刺研究 [J]. 工具技术,2022,56(11):103-1077.

    GAO Ke, JIN Chengzhe, YANG Zijing. Research on micro milling Burr of 7075 aluminum alloy [J]. Tool Engineering,2022,56(11):103-107.
    [4] 张文杰, 王明娣, 潘煜, 等. 6系列铝合金零件激光去毛刺工艺实验研究 [J]. 应用激光,2019,39(4):647-651.

    ZHANG Wenjie, WANG Mingdi, PAN Yu, et al. Experimental research on laser deburring process for 6 series aluminum alloy parts [J]. Applied Laser,2019,39(4):647-651.
    [5] 陈耀峰, 李康, 明伟伟, 等. 发动机缸盖铣削毛刺形成及控制技术研究 [J]. 机械设计与制造,2021,365(7):163-165,170.

    CHEN Yaofeng, LI Kang, MING Weiwei, et al. Research on formation and control technology of burrs of engine cylinder head milling [J]. Machinery Design & Manufacture,2021,365(7):163-165,170.
    [6] XU L, HUANG C, SU R, et al. Estimation of tool life and cutting burr in high speed milling of the compacted graphite iron by DE based adaptive neuro-fuzzy inference system [J]. Mechanical Sciences,2019,10(1):243-254.
    [7] HASHIMURA M, CHANG Y P, DOMNFELD D. Analysis of burr formation mechanism in orthogonal cutting [J]. Journal of Manufacturing Science and Engineering,1999,121(1):1-7. doi: 10.1115/1.2830569
    [8] 王贵成. 金属切削毛刺分类体系的研究及其应用 [J]. 中国机械工程,1995,(6):40-42.

    WANG Guicheng. Research and application of the classification system for metal cutting burrs [J]. China Mechanical Engineering,1995,(6):40-42.
    [9] NIKNAM S A, SONGMENE V. Analysis of friction and burr formation in slot milling[J]. Procedia Cirp, 2014.
    [10] 罗蒙, 刘钢, 陈明. 铝合金槽铣中毛刺形成机理与控制方法 [J]. 上海交通大学学报,2007,41(12):1905-1909.

    LUO Meng, LIU Gang, CHEN Ming. Mechanism of burr formation and control methods in slot milling aluminum alloy [J]. Journal of Shanghai Jiao Tong University,2007,41(12):1905-1909.
    [11] 雷学林. 微细刀具表面金刚石涂层的制备及其应用基础研究[D]. 上海: 上海交通大学, 2015.

    LEI Xuelin. Study on the fabrication and application of diamond films on micro cutting tools[D]. Shanghai: Shanghai Jiaotong University, 2015.
    [12] 邵伟平, 张韬. 纳米金刚石涂层刀具高速铣削7075铝合金的工艺参数优化 [J]. 金刚石与磨料磨具工程,2022,42(4):473-480.

    SHAO Weiping, ZHANG Tao. Process parameters optimization of high-speed milling 7075 aluminum alloy with nano-diamond coated tool [J]. Diamond and Abrasives Engineering,2022,42(4):473-480.
    [13] 张韬, 薛喆, 万方, 等. 微米及纳米WC-Co基BDD污水处理电极的制备研究 [J]. 人工晶体学报,2023,52(2):354-362.

    ZHANG Tao, XUE Zhe, WAN Fang, et al. Preparation of micro- and nano-WC-Co/BDD electrodes for wastewater treatment [J]. Journal of Synthetic Crystals,2023,52(2):354-362.
    [14] WANG B, LIU Z Q, SU G S, et al. Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining [J]. International Journal of Mechanical Sciences,2015(104):44-59. doi: 10.1016/j.ijmecsci.2015.10.004
    [15] WANG B, LIU Z Q. Evaluation on fracture locus of serrated chip generation with stress triaxiality in high speed machining of Ti6A14V [J]. Materials and Design,2016,(98):68-78. doi: 10.1016/j.matdes.2016.03.012
    [16] RAMASUBRAMANIAN K, ARUNACHALAMN N, RAMACHANDRA R M S. Wear performance of nano-engineered boron doped graded layer CVD diamond coated cutting tool for machining of Al-SiC MMC[J]. Wear, 2018(426/427): 1536-1547.
    [17] KREMER A, DEVILLEZ A, Dominiak S, et al. Machinability of Al/SiC particulate metal-matrix Composites under dry conditions with CVD diamond-coated carbide tools [J]. Machining Science and Technology,2008,12(2):214-233. doi: 10.1080/10910340802067494
    [18] 邓福铭, 朱灏, 王双, 等. 不同结构金刚石涂层刀具的制备及性能参数优化[J]. 人工晶体学报, 2018, 47(7): 1353-1358, 1365.

    DENG Fuming, ZHU Hao, WANG Shuang, et al. Preparation and properties parameter optimization of different structural diamond coated tools[J]. Journal of Synthetic Crystals, 2018, 47 (7): 1353-1358, 1365.
    [19] 王宜豹, 黄楠, 刘鲁生, 等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报,2019,33(1):15-26.

    WANG Yibao, HUANG Nan, LIU Lusheng, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation al-alloy [J]. Chinese Journal of Materials Research,2019,33(1):15-26.
    [20] ZHANG Y, KANG R, DONG Z, et al. Effect of dislocation density distribution in work-hardened layer on cutting characteristics in the multi-cutting of 49Fe49Co2V alloy[J]. Journal of Manufacturing Processes, 2023(85): 1187-1196.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  80
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 修回日期:  2023-07-26
  • 录用日期:  2023-08-07
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回