CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米划擦速度对单晶硅去除行为的影响

田海兰 闫少华 孙真真 王浩昌 闫海鹏

田海兰, 闫少华, 孙真真, 王浩昌, 闫海鹏. 纳米划擦速度对单晶硅去除行为的影响[J]. 金刚石与磨料磨具工程, 2024, 44(3): 319-326. doi: 10.13394/j.cnki.jgszz.2023.0124
引用本文: 田海兰, 闫少华, 孙真真, 王浩昌, 闫海鹏. 纳米划擦速度对单晶硅去除行为的影响[J]. 金刚石与磨料磨具工程, 2024, 44(3): 319-326. doi: 10.13394/j.cnki.jgszz.2023.0124
TIAN Hailan, YAN Shaohua, SUN Zhenzhen, WANG Haochang, YAN Haipeng. Effect of nano-scratch speed on removal behavior of single crystal silicon[J]. Diamond & Abrasives Engineering, 2024, 44(3): 319-326. doi: 10.13394/j.cnki.jgszz.2023.0124
Citation: TIAN Hailan, YAN Shaohua, SUN Zhenzhen, WANG Haochang, YAN Haipeng. Effect of nano-scratch speed on removal behavior of single crystal silicon[J]. Diamond & Abrasives Engineering, 2024, 44(3): 319-326. doi: 10.13394/j.cnki.jgszz.2023.0124

纳米划擦速度对单晶硅去除行为的影响

doi: 10.13394/j.cnki.jgszz.2023.0124
基金项目: 河北省自然科学基金(E2021208004)。
详细信息
    作者简介:

    田海兰,女,1978年生,硕士、副教授。主要研究方向:精密加工技术、智能车辆与智能控制等。E-mail:112252559@qq.com

    通讯作者:

    闫海鹏,男,1987年生,博士、副教授,硕士生导师。主要研究方向:精密加工技术及故障诊断。E-mail:lnyanhp@126.com

  • 中图分类号: TH161; TG58; TG74

Effect of nano-scratch speed on removal behavior of single crystal silicon

  • 摘要: 单晶硅作为典型的硬脆材料在不同的划擦速度下会有不同的应变率,进而产生不同的材料去除行为,采用分子动力学从应变率角度研究不同划擦速度下材料的变形与去除过程。结果表明:划擦过程中随划擦速度由25 m/s增加到250 m/s,单晶硅的应变率从1.25 × 1010 s−1提高至1.25 × 1011 s−1,其划擦力、剪切应力和摩擦系数减小,划擦温度升高,且划擦表面的轮廓精度和粗糙度随划擦速度的增大而改善。划擦过程中的非晶化和相变是单晶硅纳米尺度变形的主要发生机制,剪切应力减小造成其亚表面损伤层深度由2.24 nm减小到1.89 nm,划擦温度升高导致其表面非晶层深度增加。

     

  • 图  1  单晶硅纳米划擦的分子动力学模型

    Figure  1.  Molecular dynamics model for nano-scratch of single crystal silicon

    图  2  单晶硅划擦过程中力的变化

    Figure  2.  Variation of forces during scratching of single crystal silicon

    图  3  不同划擦速度下力的变化

    Figure  3.  Variation of force at different scratching speeds

    图  4  单晶硅划擦过程中剪切应力与摩擦系数变化

    Figure  4.  Variation of shear stress and friction coefficient during scratching of single crystal silicon

    图  5  不同划擦速度下剪切应力和摩擦系数的变化

    Figure  5.  Variation of shear stress and friction coefficient at different scratching speeds

    图  6  不同划擦距离下的热量分布情况

    Figure  6.  Heat distribution at different scratching distances

    图  7  不同划擦速度下工件划擦区域的热量分布

    Figure  7.  Heat distribution in the scratching area of workpiece at different scratching speeds

    图  8  不同划擦距离下的原子位移情况

    Figure  8.  Atomic displacement at different scratching distances

    图  9  不同划擦速度下划擦表面的形成轮廓

    Figure  9.  Formation profile of the scratched surface at different scrubbing speeds

    图  10  不同划擦距离下亚表面损伤形成

    Figure  10.  Subsurface damage formation at different scratching distances

    图  11  不同划擦速度下亚表面损伤形成

    Figure  11.  Subsurface damage formation at different scratching speeds

    表  1  单晶硅纳米划擦的分子动力学参数

    Table  1.   Molecular dynamics parameters for nano-scratch of single crystal silicon

    仿真参数规格或取值
    模型尺寸长 ×
    宽 × 高
    30 nm× 15 nm× 16 nm
    原子总数 N / 个456 982
    压头半径 r / nm2.5
    最大划擦距离 dmax / nm25
    初始温度 T / K297
    划擦深度 h / nm2
    划擦速度 v / (m·s−1)25,50,100,150,200,250
    应变率 ε*/s−11.25 × 1010,2.50 × 1010,
    5.00 × 1010,7.50 × 1010,
    1.00 × 1011,1.25 × 1011
    时间步 t / fs1
    下载: 导出CSV
  • [1] 田海兰, 韩涛, 闫少华, 等. 单晶硅纳米磨削亚表面损伤形成机制及其抑制研究 [J]. 制造技术与机床,2023,729(3):24-30.

    TIAN Hailan, HAN Tao, YAN Shaohua, et al. Study on formation mechanism and suppression of subsurface damage during nano-grinding of monocrystalline silicon [J]. Manufacturing Technology & Machine Tool,2023,729(3):24-30.
    [2] KANG R K, ZHANG Y, GAO S, et al. High surface integrity fabrication of silicon wafers using a newly developed nonwoven structured grind-polishing wheel [J]. Journal of Manufacturing Processes,2022,77(5):229-239.
    [3] ZHANG C Y, DONG Z G, YUAN S, et al. Study on subsurface damage mechanism of gallium nitride in nano-grinding [J]. Materials Science in Semiconductor Processing,2021(128):105760. doi: 10.1016/j.mssp.2021.105760
    [4] WANG H, KANG R K, BAO Y, et al. Microstructure evolution mechanism of tungsten induced by ultrasonic elliptical vibration cutting at atomic/nano scale [J]. International Journal of Mechanical Sciences,2023(253):108397. doi: 10.1016/j.ijmecsci.2023.108397
    [5] LI P H, GUO X G, YUAN S, et al. Effects of grinding speeds on the subsurface damage of single crystal silicon based on molecular dynamics simulations [J]. Applied Surface Science,2021(554):149668. doi: 10.1016/j.apsusc.2021.149668
    [6] ZHANG C Y, GUO X G, YUAN S, et al. Effects of initial temperature on the damage of GaN during nanogrinding [J]. Applied Surface Science,2021(556):149771. doi: 10.1016/j.apsusc.2021.149771
    [7] 吴珍珍, 刘一扬, 韩涛, 等. 基于分子动力学的GaN纳米磨削亚表面损伤形成机制 [J]. 微纳电子技术, 2022, 59(12): 1368–1374, 1382.

    WU Zhenzhen, LIU Yiyang, HAN Tao, et al. Formation mechanism of subsurface damage of GaN during nano-grinding based on molecular dynamic [J]. Micronanoelectronic Technology, 2022, 59(12): 1368–1374, 1382.
    [8] ZHANG C Y, DONG Z G, ZHANG S H, et al. The deformation mechanism of gallium-faces and nitrogen-faces gallium nitride during nanogrinding [J]. International Journal of Mechanical Sciences,2021(214):106888.
    [9] 张瑜, 康仁科, 高尚, 等. 湿式机械化学磨削单晶硅的软磨料砂轮及其磨削性能 [J]. 机械工程学报,2023,59(3):328-336. doi: 10.3901/JME.2023.03.328

    ZHANG Yu, KANG Renke, GAO Shang, et al. Development and evaluation of soft abrasive grinding wheel for silicon wafer in wet mechanical chemical Grinding [J]. Journal of Mechanical Engineering,2023,59(3):328-336. doi: 10.3901/JME.2023.03.328
    [10] LI C, ZHANG F H, PIAO Y C. Strain-rate dependence of surface/subsurface deformation mechanisms during nanoscratching tests of GGG single crystal [J]. Ceramics International,2019(45):15015-15024. doi: 10.1016/j.ceramint.2019.04.238
    [11] WANG H, YANG G L, SU H, et al. Insight into surface formation mechanism during ultrasonic elliptical vibration cutting of tungsten alloy by scratching experiment and molecular dynamics [J]. Tribology International,2024(191):109088.
    [12] WANG J S, ZHANG X D, FANG F Z, et al. Study on nano-cutting of brittle material by molecular dynamics using dynamic modeling [J]. Computer Material Science,2020(183):109851. doi: 10.1016/j.commatsci.2020.109851
    [13] 卢守相, 杨秀轩, 张建秋, 等. 关于硬脆材料去除机理与加工损伤的理性思考 [J]. 机械工程学报,2022,58(15):31-45.

    LU Souxiang, YANG Xiuxuan, ZHANG Jianqiu, et al. Rational discussion on material removal mechanisms and machining damage of hard and brittle materials [J]. Journal of Mechanical Engineering,2022,58(15):31-45.
    [14] ZHANG J, HE B, ZHANG B. Failure mode change and material damage with varied machining speeds: A review [J]. International Journal of Extreme Manufacturing,2023(5):022003. doi: 10.1088/2631-7990/acbd6f
    [15] DONG Z G, WANG H, QI Y N, et al. Effects of minimum uncut chip thickness on tungsten nano-cutting mechanism [J]. International Journal of Mechanical Sciences,2023(237):107790. doi: 10.1016/j.ijmecsci.2022.107790
    [16] HU J H, HE Y, LI Z, et al. On the deformation mechanism of SiC under nano-scratching: An experimental investigation [J]. Wear,2023(522):204871. doi: 10.1016/j.wear.2023.204871
    [17] 王浩. 氮化硅陶瓷磨削热特性与表面质量研究 [D]. 沈阳: 沈阳建筑大学, 2020.

    WANG Hao. Study on grinding thermal characteristics and surface quality of silicon nitride ceramics [D]. Shenyang: Shenyang Jianzhu University, 2020.
    [18] 卞达, 宋恩敏, 倪自丰, 等. 基于响应面法的单晶硅CMP抛光工艺参数优化 [J]. 金刚石与磨料磨具工程,2022,42(6):745-752. doi: 10.13394/j.cnki.jgszz.2022.0081

    BIAN Da, SONG Enmin, NI Zifeng, et al. Optimization of CMP processing parameters for Si based on response surface method [J]. Diamond & Abrasives Engineering,2022,42(6):745-752. doi: 10.13394/j.cnki.jgszz.2022.0081
    [19] 高航, 李睿祺, 许启灏, 等. 金刚石工具加工SiO2f/SiO2复合材料的可行性研究 [J]. 金刚石与磨料磨具工程,2023,43(1):75-81.

    GAO Hang, LI Ruiqi, XU Qihao, et al. Feasibility study on SiO2f/SiO2 composites processed by diamond tools [J]. Diamond & Abrasives Engineering,2023,43(1):75-81.
    [20] XIE W K, FANG F Z. Effect of tool edge radius on material removal mechanism in atomic and close-to-atomic scale cutting [J]. Applied Surface Science,2020(504):144451. doi: 10.1016/j.apsusc.2019.144451
    [21] 王颖, 苑泽伟, 张幼军. 超精密切削加工的材料去除理论综述 [J]. 机械设计与制造,2022,82(12):147-150, 155. doi: 10.3969/j.issn.1001-3997.2022.12.029

    WANG Ying, YUAN Zewei, ZHANG Youjun. Review of material removal theory for ultraprecision machining [J]. Machinery Design & Manufacture,2022,82(12):147-150, 155. doi: 10.3969/j.issn.1001-3997.2022.12.029
    [22] IRWAN R, HUANG H. Surface and subsurface deformation characteristics of cemented tungsten carbide under nanoscratching [J]. International Journal of Surface Science and Engineering,2013,7(2):122-134. doi: 10.1504/IJSURFSE.2013.0536988
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  108
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-06
  • 修回日期:  2023-08-09
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回