CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层纳米孔的制造与应用

黄洁钰 曾兆炜 王成勇 袁志山

黄洁钰, 曾兆炜, 王成勇, 袁志山. 双层纳米孔的制造与应用[J]. 金刚石与磨料磨具工程, 2024, 44(3): 407-414. doi: 10.13394/j.cnki.jgszz.2023.0105
引用本文: 黄洁钰, 曾兆炜, 王成勇, 袁志山. 双层纳米孔的制造与应用[J]. 金刚石与磨料磨具工程, 2024, 44(3): 407-414. doi: 10.13394/j.cnki.jgszz.2023.0105
HUANG Jieyu, ZENG Zhaowei, WANG Chengyong, YUAN Zhishan. Fabrication and application of double-layer nanopore[J]. Diamond & Abrasives Engineering, 2024, 44(3): 407-414. doi: 10.13394/j.cnki.jgszz.2023.0105
Citation: HUANG Jieyu, ZENG Zhaowei, WANG Chengyong, YUAN Zhishan. Fabrication and application of double-layer nanopore[J]. Diamond & Abrasives Engineering, 2024, 44(3): 407-414. doi: 10.13394/j.cnki.jgszz.2023.0105

双层纳米孔的制造与应用

doi: 10.13394/j.cnki.jgszz.2023.0105
基金项目: 广东省自然科学基金(2021A1515012457)。
详细信息
    作者简介:

    王成勇,男,1964 年生,博士、教授、博士生导师。主要研究方向:高速加工涂层刀具制备、难加工材料的精密超精密与纳米加工理论与技术、超硬材料及其工具制造和应用技术。E-mail:cywang@gdut.edu.cn

    通讯作者:

    袁志山,男,1987 年生,博士、副教授、硕士生导师。主要研究方向:微纳制造技术与界面科学。E-mail:zhishanyuan@gdut.edu.cn

  • 中图分类号: TH77

Fabrication and application of double-layer nanopore

  • 摘要: 由于具有孔径可调节、物理化学性质稳定、极端环境适应性强、集成度高等优点,固态纳米孔逐渐成为最具潜力的单分子测序工具。在固态纳米孔发展过程中,提高其单分子检测精度一直是研究人员关注的重点。近年来,双层纳米孔受到了广泛关注。与传统的单层纳米孔相比,双层纳米孔具有的孔-腔-孔结构提供了2个分子识别位点和纳米受限空间。双孔提供的2个分子识别位点可以在单次过孔事件中获得2次目标信号,所获得的双重检测信号不仅丰富了检测信息,也为信号分析提供了最为直接的对比信息源。此外,双层孔中的空腔还可作为单分子化学反应器。因此,双层纳米孔的出现拓宽了纳米孔传感器的应用范围,在单分子检测方面具有广阔的应用前景。本文概述了纳米孔的发展历程,并重点介绍了双层纳米孔的制造方法及其在单分子检测领域的应用。

     

  • 图  1  纳米孔检测原理

    I0-基准电流,ΔI-电流变化幅值,Δt-持续时间

    Figure  1.  Schematic diagram of nanopore detection principle

    I0-Reference current,ΔI-Current variation,Δt-Lasting time

    图  2  孔-腔-孔结构[33]

    Figure  2.  Pore–cavity–pore structure[33]

    图  3  纳米孔熵笼结构[32]

    Figure  3.  Nanopore entropic cage structure[32]

    图  4  氮化硅-石墨烯双层孔结构[35]

    Figure  4.  Double-layer nanopore consisting of silicon nitride and graphene[35]

    图  5  纳米孔阵列膜-纳米孔结构[36]

    Figure  5.  Arrayed nanopore membrane - nanopore structure[36]

    图  6  堆叠孔-腔-孔结构研究λDNA分子的电泳飞行时间[30]

    Figure  6.  Time-of-flight of λDNA molecule using stacked ‘pore-cavity-pore’ device[30]

    图  7  纳米熵笼作为单分子化学反应器[32]

    Figure  7.  Entropic cages as reactors for chemically modifying single DNA molecules[32]

    图  8  双层纳米孔辅助DNA动力学校对[31]

    Figure  8.  Application of stacked pore–cavity–pore device[31]

    图  9  平面孔-腔-孔结构的应用

    Figure  9.  Application of in-plane pore–cavity–pore device

  • [1] COULTER W H. Means for counting particles suspended in a fluid: US11281949A [P]. 1953-10-20.
    [2] KASIANOWICZ J J, BRANDIN E, BRANTON D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(24):13770-13773. doi: 10.1073/pnas.93.24.13770
    [3] AKHTARIAN S, MIRI S, DOOSTMOHAMMADI A, et al. Nanopore sensors for viral particle quantification: current progress and future prospects [J]. Bioengineered,2021,12(2):9189-9215. doi: 10.1080/21655979.2021.1995991
    [4] CLARKE J, WU H C, JAYASINGHE L, et al. Continuous base identification for single-molecule nanopore DNA sequencing [J]. Nature Nanotechnology,2009,4(4):265-270. doi: 10.1038/nnano.2009.12
    [5] MANRAO E A, DERRINGTON I M, LASZLO A H, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase [J]. Nature Biotechnology,2012,30(4):349-353. doi: 10.1038/nbt.2171
    [6] WENDELL D, JING P, GENG J, et al. Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores [J]. Nature Nanotechnology,2009,4(11):765-772. doi: 10.1038/nnano.2009.259
    [7] MULLEY J F, HARGREAVES A D. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing [J]. Peerj,2015,3(3):e1441. doi: 10.7717/peerj.1441
    [8] JAIN M, OLSEN H E, PATEN B, et al. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community [J]. Genome Biology,2016,17(1):239. doi: 10.1186/s13059-016-1103-0
    [9] RANG F J, KLOOSTERMAN W P, JEROEN D R. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy [J]. Genome Biology,2018,19(1):90. doi: 10.1186/s13059-018-1462-9
    [10] BOZA V, BREJOVA B, VINAR T. DeepNano: Deep recurrent neural networks for base calling in MinION Nanopore reads [J]. PLoS ONE,2017,12(6):e0178751. doi: 10.1371/journal.pone.0178751
    [11] LIN B, HUI J, MAO H. Nanopore technology and its applications in gene sequencing [J]. Biosensors,2021,11(7):214. doi: 10.3390/bios11070214
    [12] BULL R A, ADIKARI T N, FERGUSON J M, et al. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis [J]. Nature Communications,2020,11(1):6272. doi: 10.1038/s41467-019-13858-z
    [13] LI J, STEIN D, MCMULLAN C, et al. Ion-beam sculpting at nanometre length scales [J]. Nature,2001,412(6843):166-169. doi: 10.1038/35084037
    [14] STORM A J, CHEN J H, LING X S, et al. Fabrication of solid-state nanopores with single-nanometre precision [J]. Nature Materials,2003,2(8):537-540. doi: 10.1038/nmat941
    [15] GIERAK J, MADOURI A, BIANCE A L, et al. Sub-5 nm FIB direct patterning of nanodevices [J]. Microelectronic Engineering,2007,84(5/6/7/8):779-783. doi: 10.1016/j.mee.2007.01.059
    [16] YANG J, FERRANTI D C, STERN L A, et al. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection [J]. Nanotechnology,2011,22(28):285310. doi: 10.1088/0957-4484/22/28/285310
    [17] KWOK H, BRIGGS K, TABARD-COSSA V. Nanopore fabrication by controlled dielectric breakdown [J]. PLoS One,2014,9(3):e92880. doi: 10.1371/journal.pone.0092880
    [18] YANAGI I, ISHIDA T, FUJISAKI K, et al. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process [J]. Scientific Reports,2015,5(1):1-13. doi: 10.9734/JSRR/2015/14076
    [19] VENTA K, SHEMER G, PUSTER M, et al. Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores [J]. Acs Nano,2013,7(5):4629-4636. doi: 10.1021/nn4014388
    [20] SAWAFTA F, CARLSEN A T, HALL A R. Membrane thickness dependence of nanopore formation with a focused helium ion beam [J]. Sensors,2014,14(5):8150-8161. doi: 10.3390/s140508150
    [21] LARKIN J, HENLEY R, BELL D C, et al. Slow DNA transport through nanopores in hafnium oxide membranes [J]. Acs Nano,2013,7(11):10121-10128. doi: 10.1021/nn404326f
    [22] GARAJ S, HUBBARD W, REINA A, et al. Graphene as a subnanometre trans-electrode membrane [J]. Nature,2010,467(7312):190-193. doi: 10.1038/nature09379
    [23] MERCHANT C. DNA translocation through graphene nanopores [J]. Biophysical Journal,2010,100(3):521a. doi: 10.1016/j.bpj.2010.12.3046
    [24] YUAN Z, LIU Y, DAI M. Controlling DNA translocation through solid-state nanopores [J]. Nanoscale Research Letters,2020,15(1):80. doi: 10.1186/s11671-020-03308-x
    [25] IVANOV A P, INSTULI E, MCGILVERY C M, et al. DNA tunneling detector embedded in a nanopore [J]. Nano Letters,2011,11(1):279-285. doi: 10.1021/nl103873a
    [26] WANG Y, SADAR J, TSAO C W, et al. Nanopore chip with self-aligned transverse tunneling junction for DNA detection [J]. Bisosensors and Bioelectronics,2021,193:113552. doi: 10.1016/j.bios.2021.113552
    [27] GRAF M, LIU K, SARATHY A, et al. Transverse detection of DNA in a MoS2 nanopore [J]. Biophysical Journal,2018,114(3):180a. doi: 10.1016/j.bpj.2017.11.1005
    [28] XIE P, XIONG Q, FANG Y, et al. Local electrical potential detection of DNA by nanowire-nanopore sensors [J]. Nature Nanotechnology,2012,7(2):119-125. doi: 10.1038/nnano.2011.217
    [29] LI W, ZHOU J, MACCAFERRI N, et al. Enhanced optical spectroscopy for multiplexed DNA and protein-sequencing with plasmonic nanopores: Challenges and prospects [J]. Analytical Chemistry,2022,94(2):503-514. doi: 10.1021/acs.analchem.1c04459
    [30] LANGECKER M, PEDONE D, SIMMEL F C, et al. Electrophoretic time-of-flight measurements of single DNA molecules with two stacked nanopores [J]. Nano Letters,2011,11(11):5002-5007. doi: 10.1021/nl2030079
    [31] LING X S. DNA sequencing using nanopores and kinetic proofreading [J]. Quantitative Biology,2020,8(3):187-194. doi: 10.1007/s40484-020-0201-x
    [32] LIU X, SKANATA M M, STEIN D. Entropic cages for trapping DNA near a nanopore [J]. Nature Communications,2015,6:6222. doi: 10.1038/ncomms7222
    [33] PEDONE D, LANGECKER M, MUENZER A M, et al. Fabrication and electrical characterization of a pore-cavity-pore device [J]. Journal of Physics-Condensed Matter,2010,22(45):454115. doi: 10.1088/0953-8984/22/45/454115
    [34] 叶佳佳. 基于纳米孔测序的磁镊微控系统设计与制造 [D]. 南京: 东南大学, 2018.

    YE Jiajia. Design and fabrication of magnetic tweezers system based on nanopore sequencing [D]. Nanjing: Southeast University, 2018.
    [35] YANG H, WEI S, JI A, et al. Double layer nanopore fabricated by FIB and TEM [C]// IEEE. Proceedings of the 2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). Shanghai, 2017: 274-277.
    [36] LAM M H, BRIGGS K, KASTRITIS K, et al. Entropic trapping of DNA with a nanofiltered nanopore [J]. Acs Applied Nano Materials,2019,2(8):4773-4781. doi: 10.1021/acsanm.9b00606
    [37] PEDONE D, LANGECKER M, ABSTREITER G, et al. A pore-cavity-pore device to trap and investigate single nanoparticles and DNA molecules in a femtoliter compartment: Confined diffusion and narrow escape [J]. Nano Letters,2011,11(4):1561-1567. doi: 10.1021/nl104359c
    [38] HARMS Z D, HAYWOOD D G, KNELLER A R, et al. Single-particle electrophoresis in nanochannels [J]. Analytical Chemistry,2015,87(1):699-705. doi: 10.1021/ac503527d
    [39] CHOI J, JIA Z, RIAHIPOUR R, et al. Label-free identification of single mononucleotides by nanoscale electrophoresis [J]. Small,2021,17(42):2102567. doi: 10.1002/smll.202102567
    [40] ATHAPATTU U S, RATHNAYAKA C, VAIDYANATHAN S, et al. Tailoring thermoplastic in-plane nanopore size by thermal fusion bonding for the analysis of single molecules [J]. Acs Sensors,2021,6(8):3133-3143. doi: 10.1021/acssensors.1c01359
  • 加载中
图(9)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  22
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-05-27
  • 录用日期:  2023-06-30
  • 网络出版日期:  2024-06-28
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回