CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声加工制备表面微织构及使役性能研究进展

别文博 赵波 陈凡 王晓博 赵重阳 牛赢

别文博, 赵波, 陈凡, 王晓博, 赵重阳, 牛赢. 超声加工制备表面微织构及使役性能研究进展[J]. 金刚石与磨料磨具工程, 2023, 43(4): 401-416. doi: 10.13394/j.cnki.jgszz.2023.0095
引用本文: 别文博, 赵波, 陈凡, 王晓博, 赵重阳, 牛赢. 超声加工制备表面微织构及使役性能研究进展[J]. 金刚石与磨料磨具工程, 2023, 43(4): 401-416. doi: 10.13394/j.cnki.jgszz.2023.0095
BIE Wenbo, ZHAO Bo, CHEN Fan, WANG Xiaobo, ZHAO Chongyang, NIU Ying. Progress of ultrasonic vibration-assisted machining surface micro-texture and serviceability[J]. Diamond & Abrasives Engineering, 2023, 43(4): 401-416. doi: 10.13394/j.cnki.jgszz.2023.0095
Citation: BIE Wenbo, ZHAO Bo, CHEN Fan, WANG Xiaobo, ZHAO Chongyang, NIU Ying. Progress of ultrasonic vibration-assisted machining surface micro-texture and serviceability[J]. Diamond & Abrasives Engineering, 2023, 43(4): 401-416. doi: 10.13394/j.cnki.jgszz.2023.0095

超声加工制备表面微织构及使役性能研究进展

doi: 10.13394/j.cnki.jgszz.2023.0095
基金项目: 国家自然科学基金(51905157,52005164);河南省科技攻关项目(222102220003,222103810043,232102221018)。
详细信息
    作者简介:

    别文博,男,1987年生,博士。主要研究方向:精密超精密加工技术与装备。E-mail:wenbo187120@163.com

    通讯作者:

    赵波,男,1956年生,教授。主要研究方向:精密超精密加工技术与装备。E-mail:zhaob@hpu.edu.cn

  • 中图分类号: TB559; TG174.4

Progress of ultrasonic vibration-assisted machining surface micro-texture and serviceability

  • 摘要: 超声加工作为一种调控外部能量输入的有效途径,被广泛应用于表面成形改性制造中,通过对界面能量的精准调控,可以实现表面微织构的制备。为促进超声加工技术在表面微织构制备及提高零件使役性能方面的应用,首先,对目前表面织构制备的方法进行对比分析,重点对超声微织构制备的加工方法进行综合评述,分别从不同的振动形式及超声维数分析超声车削、铣削、磨削及超声强化制备表面微织构的特点,并就各工艺应用的局限性及亟须解决的关键问题进行总结。其次,根据各加工工艺制备的表面微织构,分别从摩擦性能、润湿性能及结构色调控等使役性能方面进行分析,主要对表面织构的摩擦磨损、摩擦系数、承载能力、接触性能和光学性能调控等内容进行阐述,结果表明超声加工制备的表面微织构在一定程度上能够提高零件耐磨性,改善表面的亲疏水状态,并能够获得相关的光学功能特性。最后,鉴于目前研究过程中有待深入的方面,对超声加工表面微织构的制备及使役性能进行展望。

     

  • 图  1  超声振动车削不同振动方向

    Figure  1.  Different direction in ultrasonic vibration-assisted turning

    图  2  振动车削制备的不同表面微织构

    Figure  2.  Different surface micro-textures fabricated by vibration-assisted turning

    图  3  超声振动车削不同方向形成的微织构

    Figure  3.  Surface structures generated in ultrasonic vibration-assisted turning with different directions

    图  4  椭圆振动切削模型

    Figure  4.  Model of elliptical vibration cutting

    图  5  纵弯椭圆装置加工的微织构

    Figure  5.  Microtexture machined by longitudinal-bending elliptic devices

    图  6  典型的椭圆振动装置及加工织构

    Figure  6.  Surface texture machined by typical elliptical vibration device

    图  7  非共振椭圆振动切削装置

    Figure  7.  Non-resonant elliptic vibration cutting device

    图  8  非共振椭圆振动切削加工的表面微织构

    Figure  8.  Surface microtexture machined by non-resonant elliptic vibration cutting

    图  9  三维超声椭圆振动切削

    Figure  9.  Three dimensional ultrasonic elliptical vibration cutting

    图  10  三维椭圆振动车削

    Figure  10.  Three dimensional elliptical vibration turning

    图  11  非共振三维椭圆振动装置

    Figure  11.  Non-resonant three dimensional elliptic vibration device

    图  12  光栅3D形貌[50]

    Figure  12.  Grating 3D morphology[50]

    图  13  超声振动铣削制备仿生表面[51]

    Figure  13.  Biomimetic surface fabricated by ultrasonic vibration milling[51]

    图  14  纵扭超声铣削加工表面织构[53]

    Figure  14.  Surface texture machined by longitudinal-torsional ultrasonic milling[53]

    图  15  不同振动方式加工表面微观形貌[54]

    Figure  15.  Microstructure machined with different vibration modes[54]

    图  16  不同维数超声振动铣削表面微织构[55]

    Figure  16.  Surface microtexture of ultrasonic vibration-assisted milling with different dimensions[55]

    图  17  旋转超声表面织构制备

    Figure  17.  Surface texture fabricated by rotary ultrasonic machining

    图  18  超声磨削微织构仿真与试验[57]

    Figure  18.  Simulation and experimental results of micro-texture in ultrasonic vibration-assisted grinding[57]

    图  19  椭圆振动加工的分层织构[60]

    Figure  19.  Hierarchical textured surface generate by elliptical vibration machining[60]

    图  20  超声椭圆单颗磨粒加工表面[61]

    Figure  20.  Surface machined by a single abrasive grain of ultrasonic elliptical vibration[61]

    图  21  纵扭超声磨削加工表面织构

    Figure  21.  Surface texture in longitudinal-torsional ultrasonic grinding

    图  22  不锈钢陈列微织构对比

    Figure  22.  Comparison of display micro-texture with stainless steel

    图  23  不同深度下的表面形貌

    Figure  23.  Surface topography of different depths

    图  24  超声喷丸与传统喷丸对Ti6Al4V表面粗糙度的影响

    Figure  24.  Influence of ultrasonic and conventional shot peening on surface roughness of titanium alloy

    图  25  超声喷丸的表面形貌

    Figure  25.  Surface morphology of ultrasonic shot peening

    图  26  不同条件下的摩擦系数

    Figure  26.  Coefficient of friction in different conditions

    图  27  不同加工参数下的接触角

    Figure  27.  Water contact angle under different machining parameters

    图  28  频率和振幅对接触角的影响

    Figure  28.  Influence of the vibration frequency and amplitude on the contact angle

    图  29  不同表面的接触角

    Figure  29.  Contact angles of different surfaces

    图  30  超声椭圆织构化结构色

    Figure  30.  Structural color by ultrasonic elliptic texturization

    图  31  超声椭圆织构化加工出不同的浮雕

    Figure  31.  Different basso-relievo by ultrasonic elliptic texturization

  • [1] 王亮亮, 赵波, 殷森. 金属表面疏水性研究进展 [J]. 表面技术,2017,46(12):153-161. doi: 10.16490/j.cnki.issn.1001-3660.2017.12.025

    WANG Liangliang, ZHAO Bo, YIN Sen. Hydrophobicity of metal surface [J]. Surface Technology,2017,46(12):153-161. doi: 10.16490/j.cnki.issn.1001-3660.2017.12.025
    [2] SANTOS L M, LANG A, WAHIDI R, et al. Passive separation control of shortfin mako shark skin in a turbulent boundary layer [J]. Experimental Thermal and Fluid Science,2021,128:110433. doi: 10.1016/j.expthermflusci.2021.110433
    [3] CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of nepenthes alata [J]. Nature,2016,532(7579):85-89. doi: 10.1038/nature17189
    [4] 张德远, 陈华伟, 张鑫, 等. 军用仿生技术发展趋势 [J]. 国防技术,2013,34(6):1-5, 10. doi: 10.3969/j.issn.1671-4547.2013.06.001

    ZHANG Deyuan, CHEN Huawei, ZHANG Xin, et al. The development and future of bionics in military application [J]. National Defense Science & Technology,2013,34(6):1-5, 10. doi: 10.3969/j.issn.1671-4547.2013.06.001
    [5] 郑清春, 毛璐璐, 史于涛, 等. 仿生织构表面对人工髋关节副动压润滑性能及减摩性分析 [J]. 机械工程学报,2021,57(11):102-111. doi: 10.3901/JME.2021.11.102

    ZHENG Qingchun, MAO Lulu, SHI Yutao, et al. Analysis of biomimetic texture surface on dynamic compression lubrication and friction reduction of artificial hip pair [J]. Journal of Mechanical Engineering,2021,57(11):102-111. doi: 10.3901/JME.2021.11.102
    [6] TIAN Y L, HU B R, SONG J, et al. Bioinspired multiscale wrinkling patterns on curved substrates: An overview [J]. Nano-Micro Letter,2020,12(1):1-42. doi: 10.1007/s40820-020-00436-y
    [7] 王东伟, 莫继良, 张琦, 等. 沟槽表面填充材料对界面摩擦振动噪声的影响 [J]. 摩擦学报,2017,37(5):647-655. doi: 10.16078/j.tribology.2017.05.012

    WANG Dongwei, MO Jiliang, ZHANG Qi, et al. Effect of filling material into grooves on the interfacial friction-induced vibration and noise [J]. Tribology,2017,37(5):647-655. doi: 10.16078/j.tribology.2017.05.012
    [8] LI X Y, LI Y P, MUZAMMIL I, et al. Antireflection and antiwetting functionalities of plasma-nanotextured polymer surfaces with biomimetic nanopillars [J]. Plasma Processes and Polymers,2020,17(11):e2000050. doi: 10.1002/ppap.202000050
    [9] FU X J, BA Y, SUN J J. Numerical study of thermocapillary migration behaviors of droplets on a grooved surface with a three-dimensional color-gradient lattice Boltzmann model [J]. Physics of Fluids,2021,33(6):062108. doi: 10.1063/5.0050081
    [10] 王志远, 邢志国, 王海斗, 等. 液滴在固体织构化表面上的润湿行为研究现状 [J]. 机械工程学报,2022,58(1):124-144.

    WANG Zhiyuan, XING Zhiguo, WANG Haidou, et al. Research progress of droplet wetting behavior on solid textured surface [J]. Journal of Mechanical Engineering,2022,58(1):124-144.
    [11] PETE B, PETER L, EVA L U. Application of laser-ultrasonics to texture measurements in metal processing [J]. Acta Materialia,2017,123:329-336. doi: 10.1016/j.actamat.2016.10.043
    [12] WU Z, BAO H, XING Y Q, et al. Tribological characteristics and advanced processing methods of textured surfaces: a review [J]. The International Journal of Advanced Manufacturing Technology,2021,114:1241-1277. doi: 10.1007/s00170-021-06954-2
    [13] LAI L J, ZHOU H, ZHU L M. Fabrication of microlens array on silicon surface using electrochemical wet stamping technique [J]. Applied Surface Science,2016,364:442-445. doi: 10.1016/j.apsusc.2015.12.085
    [14] ZHANG H G, ZHANG Z, Gilchrist M. Advances in precision micro/nano-electroforming: A state-of-the-art review [J]. Journal of Micromechanics and Microengineering,2020,30(10):103002. doi: 10.1088/1361-6439/aba017
    [15] LIAO Z R, LA MONACA A, MURRY J, et al. Surface integrity in metal machining-part I: Fundamentals of surface characteristics and formation mechanisms [J]. International Journal of Machine Tools and Manufacture,2021,162:103687. doi: 10.1016/j.ijmachtools.2020.103687
    [16] 张存鹰, 赵波. 超声振动辅助加工表面微结构及其特性研究进展 [J]. 表面技术,2019,48(5):259-274. doi: 10.16490/j.cnki.issn.1001-3660.2019.05.038

    ZHANG Cunying, ZHAO Bo. Research progress of properties of surface micro-structure in ultrasonic vibration assisted machining [J]. Surface Technology,2019,48(5):259-274. doi: 10.16490/j.cnki.issn.1001-3660.2019.05.038
    [17] YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials [J]. International Journal of Machine Tools and Manufacture,2020,156:103594. doi: 10.1016/j.ijmachtools.2020.103594
    [18] SONIA P, JAIN J K, SAXENA K K. Influence of ultrasonic vibration assistance in manufacturing processes: A Review [J]. Materials and Manufacturing Processes,2021,36(13):1451-1475. doi: 10.1080/10426914.2021.1914843
    [19] 别文博, 赵波, 王晓博, 等. 超声加工在齿轮抗疲劳制造中的研究综述与展望 [J]. 表面技术,2018,47(7):35-51. doi: 10.16490/j.cnki.issn.1001-3660.2018.07.006

    BIE Wenbo, ZHAO Bo, WANG Xiaobo, et al. Overview and expectation on gear anti-fatigue manufacture by ultrasonic-assisted machining [J]. Surface Technology,2018,47(7):35-51. doi: 10.16490/j.cnki.issn.1001-3660.2018.07.006
    [20] 高国富, 浮宗霞, 王毅, 等. Ti-Al系金属间化合物精密加工研究进展 [J]. 稀有金属材料与工程,2021,50(5):1867-1882.

    GAO Guofu, FU Zongxia, WANG Yi, et al. Research progress on precision machining of ti-al intermetallic compounds [J]. Rare Metal Materials and Engineering,2021,50(5):1867-1882.
    [21] GRECO A, RAPHAELSON S, EHMANN K, et al. Surface texturing of tribological interfaces using the vibromechanical texturing method [J]. Journal of Manufacturing Science and Engineering-Transactions of the SAME,2009,131(6):061005. doi: 10.1115/1.4000418
    [22] NESTLER A, SCHUBERT A. Surface properties in ultrasonic vibration assisted turning of particle reinforced aluminium matrix composites [J]. Procedia CIRP,2014,13:125-130. doi: 10.1016/j.procir.2014.04.022
    [23] ZHANG R, STEINERT P, SCHUBERT A. Microstructuring of surfaces by two-stage vibration-assisted turning [J]. Procedia CIRP,2014,14:136-141. doi: 10.1016/j.procir.2014.03.026
    [24] SCHUBERT A, NESTLER A, PINTERNAGEL S, et al. Influence of ultrasonic vibration assistance on the surface integrity in turning of the aluminium alloy AA2017 [J]. Materials Science and Engineering Technology,2011,42(7):658-665. doi: 10.1002/mawe.201100834
    [25] GANDHI R, SEBASTIAN D, BASU S, et al. Surfaces by vibration/modulation-assisted texturing for tribological applications [J]. International Journal of Advanced Manufacturing Technology,2016,85:909-920. doi: 10.1007/s00170-015-7968-3
    [26] 李勋, 张德远. 不分离型超声椭圆振动切削试验研究 [J]. 机械工程学报,2010,46(19):177-182. doi: 10.3901/JME.2010.19.177

    LI Xun, ZHANG Deyuan. Experimental study on the unseparated ultrasonic elliptical vibration cutting [J]. Journal of Mechanical Engineering,2010,46(19):177-182. doi: 10.3901/JME.2010.19.177
    [27] LIU J, ZHANG D Y, QIN L G, et al. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP) [J]. International Journal of Machine Tools and Manufacture,2012,53:141-150. doi: 10.1016/j.ijmachtools.2011.10.007
    [28] MORIWAKI T, SHAMOTO E. Ultrasonic vibration elliptical cutting [J]. CIRP Annals,1995,44(1):31-34. doi: 10.1016/S0007-8506(07)62269-0
    [29] SHAMOTO E, MORIWAKI T. Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting [J]. CIRP Annals,1999,48(1):441-444. doi: 10.1016/S0007-8506(07)63222-3
    [30] SUZUKI N, MASUDA S, HARITANI M, et al. Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting [C]. Nagoya: IEEE, 2003.
    [31] LEE J S, LEE D W, JUNG Y H, et al. A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting [J]. Journal of Materials Processing Technology,2002,130/131:396-400. doi: 10.1016/S0924-0136(02)00740-9
    [32] SUZUKI N, HARITANI M, YANG J, et al. Elliptical vibration cutting of tungsten alloy molds for optical glass parts [J]. CIRP Annals,2007,56(1):127-130. doi: 10.1016/j.cirp.2007.05.032
    [33] ZHANG J G, SUZUKI N, WANG Y L, et al. Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond [J]. Journal of Materials Processing Technology,2014,214:2644-2659. doi: 10.1016/j.jmatprotec.2014.05.024
    [34] SUZUKI N, YOKOI H, SHAMOTO E. Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical vibration cutting [J]. Precision Engineering,2011,35:44-50. doi: 10.1016/j.precisioneng.2010.09.006
    [35] GUO P, EHMANN K F. An analysis of the surface generation mechanics of the elliptical vibration texturing process [J]. International Journal of Machine Tools and Manufacture,2013,64:85-95. doi: 10.1016/j.ijmachtools.2012.08.003
    [36] KIM G D, LOH B G. An ultrasonic elliptical vibration cutting device for micro V-groove machining: Kinematical analysis and micro V-groove machining characteristics [J]. Journal of Materials Processing technology,2007,190:181-188. doi: 10.1016/j.jmatprotec.2007.02.047
    [37] KIM G D, LOH B G. Characteristics of elliptical vibration cutting in micro-V grooving with variations in the elliptical cutting locus and excitation frequency [J]. Journal of micromechanics and microengineering,2007,18(2):025002.
    [38] KIM G D, LOH B G. Machining of micro-channels and pyramid patterns using elliptical vibration cutting [J]. The International Journal of Advanced Manufacturing Technology,2010,49:961-968. doi: 10.1007/s00170-009-2451-7
    [39] KURNIAWAN R, KISWANTO G, KO T J. Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing [J]. International Journal of Machine Tools and Manufacture,2016,106:127-140. doi: 10.1016/j.ijmachtools.2016.03.007
    [40] BREHL D E. 3-D microstructure creation using elliptical vibration-assisted machining(EUVD) [D]. Raleigh: North Carolina State University, 2014. 39: 511-514.
    [41] CHEN W Q, ZHENG L, HUO D H, et al. Surface texture formation by non-resonant vibration assisted micro milling [J]. Journal of Micromechanics and Microengineering,2018,28(2):025006. doi: 10.1088/1361-6439/aaa06f
    [42] KURNIAWAN R, KO T J. Surface topography analysis in three-dimensional elliptical vibration texturing (3D-EVT) [J]. The International Journal of Advanced Manufacturing Technology,2019,102:1601-1621. doi: 10.1007/s00170-018-03253-1
    [43] XU S L, KURIYAGAWA T, SHIMADA K, et al. Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces [J]. Frontiers of Mechanical Engineering,2017,12(1):33-45. doi: 10.1007/s11465-017-0422-5
    [44] 原路生, 赵波, 王毅, 等. 椭圆振动辅助车削7075铝合金表面微织构及其特性 [J]. 中国机械工程,2020,31(15):1831-1838. doi: 10.3969/j.issn.1004-132X.2020.15.010

    YUAN Lusheng, ZHAO Bo, WANG Yi, et al. Surface micro-texture characteristics of 7075 aluminum alloys by elliptical vibration assisted turning [J]. Chine Mechanical Engineering,2020,31(15):1831-1838. doi: 10.3969/j.issn.1004-132X.2020.15.010
    [45] 王刚. 一种三维椭圆振动金刚石切削装置的研制 [D]. 长春: 吉林大学, 2012.

    WANG Gang. Development of a three-dimensional elliptical vibration assisted diamond cutting apparatus [D]. Changchun: Jilin University, 2012.
    [46] 刘培会. 一种三维椭圆振动切削装置的研制 [D]. 长春: 吉林大学, 2013.

    LIU Peihui. Development of a new apparatus for three-dimensional elliptical vibration cutting [D]. Changchun: Jilin University, 2013.
    [47] 宋云. 三维椭圆振动辅助切削系统研究与开发 [D]. 南京: 南京航空航天大学, 2017.

    SONG Yun. Research and development of 3D elliptical vibration assisted cutting system [J]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
    [48] LU M M, ZHOU J K, LIN J Q, et al. Study on Ti-6Al-4V alloy machining applying the non-resonant three-dimensional elliptical vibration cutting [J]. Micromachines,2017,8(10):306. doi: 10.3390/mi8100306
    [49] LIN J, LU M, ZHOU X. Development of a non-resonant 3D elliptical vibration cutting apparatus for diamond turning [J]. Experimental Techniques,2016,40:173-183. doi: 10.1007/s40799-016-0021-0
    [50] CHEN J Z, LU M M, LIN J Q, et al. Non-resonant 3D elliptical vibration cutting induced submicron grating coloring [J]. International Journal of Precision Engineering and Manufacturing,2021,22:659-669. doi: 10.1007/s12541-021-00470-9
    [51] 白利娟, 张建华, 陶国灿, 等. 振动辅助铣削加工仿生表面研究 [J]. 中国机械工程,2016,27(9):1229-1233, 1242. doi: 10.3969/j.issn.1004-132X.2016.09.015

    BAI Lijuan, ZHANG Jianhua, TAO Guocan, et al. Vibration assisted milling for bionic surface manufacturing [J]. Chine Mechanical Engineering,2016,27(9):1229-1233, 1242. doi: 10.3969/j.issn.1004-132X.2016.09.015
    [52] CHEN W Q, LU Z, XIE W, et al. Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling [J]. Journal of Materials Processing Technology,2019,266:339-350. doi: 10.1016/j.jmatprotec.2018.11.011
    [53] 张存鹰, 赵波, 王晓博. 纵扭复合超声端面铣削表面微结构建模与试验研究 [J]. 表面技术,2019,48(10):52-63, 79. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.006

    ZHANG Cunying, ZHAO Bo, WANG Xiaobo. Modeling and experiment of surface microstructure by longitudinal-torsional compound ultrasonic end milling [J]. Surface Technology,2019,48(10):52-63, 79. doi: 10.16490/j.cnki.issn.1001-3660.2019.10.006
    [54] PANG Y, FENG P F, WANG J J, et al. Performance analysis of the longitudinal-torsional ultrasonic milling of Ti-6Al-4V [J]. The International Journal of Advanced Manufacturing Technology,2021,113:1255-1266. doi: 10.1007/s00170-021-06682-7
    [55] 袁照杰. Ti3Al金属间化合物多维超声加工切屑分离特性研究 [D]. 焦作: 河南理工大学, 2021.

    YUAN Zhaojie. Study on chip separation characteristics in multidimensional ultrasonic machining Ti3Al intermetallic compounds [D]. Jiaozuo: Henan Polytechnic University, 2021.
    [56] XU S L, SHIMADA K, MIZUTANI M, et al. Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool [J]. International Journal of Machine Tools and Manufacture,2014,86:12-17. doi: 10.1016/j.ijmachtools.2014.06.005
    [57] CHEN C S, TANG J Y, CHEN H F, et al. An active manufacturing method of surface micro structure based on ordered grinding wheel and ultrasonic-assisted grinding [J]. The International Journal of Advanced Manufacturing Technology,2018,97:1627-1635. doi: 10.1007/s00170-018-2044-4
    [58] JIANG J L, SUN S F, WANG D X, et al. Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process [J]. International Journal of Machine Tools and Manufacture,2020,156:10359. doi: 10.1016/j.ijmachtools.2020.103595
    [59] ZHOU W H, TANG J Y, SHAO W. Modelling of surface texture and parameters matching considering the interaction of multiple rotation cycles in ultrasonic assisted grinding [J]. International Journal of Mechanical Sciences,2020,166:105426. doi: 10.1016/j.ijmecsci.2019.105246
    [60] XU S L, SHIMADA K, MIZUTANI M, et al. Development of a novel 2D rotary ultrasonic texturing technique for fabricating tailored structures [J]. International Journal of Advanced Manufacturing Technology,2017,89:1161-1172. doi: 10.1007/s00170-016-9133-z
    [61] LIANG Z Q, WANG X B, WU Y B, et al. Experimental study on brittle-ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain [J]. International Journal of Machine Tools and Manufacture,2013,71:41-51. doi: 10.1016/j.ijmachtools.2013.04.004
    [62] WANG Q Y, LIANG Z Q, WANG X B, et al. Modelling and analysis of generation mechanism of micro-surface topography during elliptical ultrasonic assisted grinding [J]. Journal of Materials Processing technology,2020,279:116585. doi: 10.1016/j.jmatprotec.2019.116585
    [63] 马文举. 基于纵-扭复合超声辅助的陶瓷加工机理研究 [D]. 洛阳: 河南科技大学, 2020.

    MA Wenju. Research on ceramic machining mechanism based on longitudinal-torsional ultrasonic assist [D]. Luoyang: Henan University of Science and Technology, 2020.
    [64] 曹小建, 吴昌将, 顾镇媛, 等. 超声冲击纳米化的研究现状与进展 [J]. 表面技术,2019,48(8):113-121. doi: 10.16490/j.cnki.issn.1001-3660.2019.08.015

    CAO Xiaojian, WU Changjiang, GU Zhenyuan, et al. Research status and progress on ultrasonic impact nanocrystallization [J]. Surface Technology,2019,48(8):113-121. doi: 10.16490/j.cnki.issn.1001-3660.2019.08.015
    [65] 赵波, 姜燕, 别文博. 超声滚压技术在表面强化中的研究与应用进展 [J]. 航空学报,2020,41(10):023685. doi: 10.7527/S1000-6893.2020.23685

    ZHAO Bo, JIANG Yan, BIE Wenbo. Ultrasonic rolling technology in surface strengthening: Progress in research and applications [J]. Acta Aeronautica et Astronautica Sinica,2020,41(10):023685. doi: 10.7527/S1000-6893.2020.23685
    [66] LI L, KIM M, LEE S, et al. Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel [J]. Surface and Coatings Technology,2016,307:517-524. doi: 10.1016/j.surfcoat.2016.09.023
    [67] 马嘉明, 郑建明, 刘驰, 等. 超声振动冲击表面织构方法及试验研究 [J]. 兵器材料科学与工程,2020,43(1):62-67. doi: 10.14024/j.cnki.1004-244x.20191021.001

    MA Jiaming, ZHENG Jianming, LIU Chi, et al. Ultrasonic vibration impact surface texture method and experimental study [J]. Ordnance Material Science and Engineering,2020,43(1):62-67. doi: 10.14024/j.cnki.1004-244x.20191021.001
    [68] 胡王杰. 基于超声冲击的不锈钢微织构制备装置研制与实验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.

    HU Wangjie. Device development and experimental study of stainless steel microtexture manufacturing by ultrasonic impact [D]. Harbin: Harbin Institute of Technology, 2020.
    [69] 李礼, 朱有利, 吕光义. 超声深滚降低 TC4 钛合金表面粗糙度和修复表面损伤的作用 [J]. 稀有金属材料与工程,2009,38(2):339-342. doi: 10.3321/j.issn:1002-185X.2009.02.034

    LI Li, ZHU Youli, LÜ Guangyi. Influence of ultrasonic deep rolling on reducing surface roughness and healing surface scar of TC4 titanium alloy [J]. Rare Metal Materials and Engineering,2009,38(2):339-342. doi: 10.3321/j.issn:1002-185X.2009.02.034
    [70] 赵建, 王兵, 刘战强. 旋转超声滚压加工中的滚压力与滚压深度及表面形貌研究 [J]. 兵工学报,2016,37(4):696-704. doi: 10.3969/j.issn.1000-1093.2016.04.018

    ZHAO Jian, WANG Bing, LIU Zhanqiang. The investigation into burnishing force, burnishing depth and surface morphology in rotary ultrasonic burnishing [J]. Acta Armamentarii,2016,37(4):696-704. doi: 10.3969/j.issn.1000-1093.2016.04.018
    [71] ZHENG J X, ZHU L X, GUO Y L, et al. Modeling, simulation, and prediction of surface topography in two-dimensional ultrasonic rolling 7075 Al-alloy [J]. The International Journal of Advanced Manufacturing Technology,2021,113:309-320. doi: 10.1007/s00170-021-06638-x
    [72] 盖鹏涛, 陈福龙, 尚建勤, 等. 喷丸强化对表面完整性影响的研究现状与发展 [J]. 航空制造技术,2016,20:16-21. doi: 10.16080/j.issn1671-833x.2016.20.016

    GAI Pengtao, CHEN Fulong, SHANG Jianqin, et al. Recent situation and development trend of shot peening on surface integrity [J]. Aeronautical Manufacturing Technology,2016,20:16-21. doi: 10.16080/j.issn1671-833x.2016.20.016
    [73] MAAWAD E, SANO Y, WAGNER L, et al. Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys [J]. Materials Science and Engineering: A,2012,536:82-91. doi: 10.1016/j.msea.2011.12.072
    [74] 蔡晋, KIPLAGAT Collins Cherutich, 李威, 等. 超声喷丸 FGH97 粉末高温合金表面粗糙度试验与数值分析 [J]. 表面技术,2021,50(6):250-257. doi: 10.16490/j.cnki.issn.1001-3660.2021.06.028

    CAI Jin, KIPLAGAT Collins Cherutich, LI Wei, et al. Surface roughness numerical and test evaluation of FGH97 powder superalloy by ultrasonic shot peening [J]. Surface Technology,2021,50(6):250-257. doi: 10.16490/j.cnki.issn.1001-3660.2021.06.028
    [75] 朱鹏飞, 严宏志, 陈志, 等. 齿轮齿面喷丸强化研究现状与展望 [J]. 表面技术,2020,49(4):113-131. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.014

    ZHU Pengfei, YAN Hongzhi, CHEN Zhi, et al. Research status and prospect of shot peening of gear tooth flanks [J]. Surface Technology,2020,49(4):113-131. doi: 10.16490/j.cnki.issn.1001-3660.2020.04.014
    [76] 曹腾, 路冬, 舒嵘, 等. 基于超声椭圆振动辅助车削的铝合金表面微织构仿真 [J]. 陕西师范大学学报(自然科学版),2018,46(4):50-57. doi: 10.15983/j.cnki.jsnu.2018.04.244

    CAO Teng, LU Dong, SHU Zheng, et al. Simulation on surface micro texture of aluminium alloy based on ultrasonic elliptical vibration cutting [J]. Journal of Shaanxi Normal University (Natural Science Edition),2018,46(4):50-57. doi: 10.15983/j.cnki.jsnu.2018.04.244
    [77] 赵波. 硬脆材料超声珩磨系统及延性切削特征研究 [D]. 上海: 上海交通大学, 1999.

    ZHAO Bo. Study on ultrasonic honing system and feature of ductile domain cutting of hard-brittle materials [D]. Shanghai: Shanghai Jiao Tong University, 1999.
    [78] 陶国灿. 超声振动辅助铣削鱼鳞状表面成形机理及表面性能研究 [D]. 济南: 山东大学, 2016.

    TAO Guocan. Study on the forming mechanism and surface properties of ultrasonic vibration assisted milling for squamous surfaces [D]. Jinan: Shandong University, 2016.
    [79] 马超, 张建华, 陶国灿. 超声振动辅助铣削加工钛合金表面摩擦磨损性能研究 [J]. 表面技术,2017,46(8):115-119. doi: 10.16490/j.cnki.issn.1001-3660.2017.08.019

    MA Chao, ZHANG Jianhua, TAO Guocan. Wear and friction properties of titanium alloy surface subject to ultrasonic vibration assisted milling [J]. Surface Technology,2017,46(8):115-119. doi: 10.16490/j.cnki.issn.1001-3660.2017.08.019
    [80] 曹腾. 超声椭圆振动辅助切削表面微织构及其摩擦性能研究 [D]. 南昌: 南昌大学, 2018.

    CAO Teng. Study on micro texture and friction properties of ultrasonic elliptical vibration assisted cutting surface [D]. Nanchang: Nanchang University, 2018.
    [81] ZHANG J J, ZHANG J G, ROSENKRANZ A, et al. Surface textures fabricated by laser surface texturing and diamond cutting - influence of texture depth on friction and wear [J]. Advanced Engineering Materials,2018,20(4):1700995. doi: 10.1002/adem.201700995
    [82] ZHAO C Y, WANG X B, ZHAO B, et al. Microstructure of high-performance aluminum alloy surface processed by the single-excitation same-frequency longitudinal-torsional coupled ultrasonic vibration milling [J]. Materials,2018,11(10):1975. doi: 10.3390/ma11101975
    [83] 王耀宇. 摩擦副表面超声微织构加工技术研究 [D]. 太原: 中北大学, 2021.

    WANG Yaoyu. Research on ultrasonic micro-texture processing technology of friction pair surface [D]. Taiyuan: North University of China, 2021.
    [84] 夏子文. 多维超声铣削Ti3Al金属间化合物表面微织构诱导机制研究 [D]. 焦作: 河南理工大学, 2021.

    XIA Ziwen. Investigation into the induction mechanism of surface micro-texture in multi-dimension ultrasonic milling Ti3Al intermetallic compound [D]. Jiaozuo: Henan Polytechnic University, 2021.
    [85] 邢栋梁. 超声振动辅助铣削加工表面的摩擦学性能研究 [D]. 济南: 山东大学, 2012.

    XING Dongliang. Study on tribological properities of ultrasonic vibration assisted milling surfaces [D]. Jinan: Shandong University, 2012.
    [86] WEN Y Q, TANG J Y, ZHOU W, et al. Study on contact performance of ultrasonic-assisted grinding surface [J]. Ultrasonics,2019,91:193-200. doi: 10.1016/j.ultras.2018.08.009
    [87] CHEN H F, TANG J Y, SHAO W, et al. An investigation on surface functional parameters in ultrasonic-assisted grinding of soft steel [J]. International Journal of Advanced Manufacturing Technology,2018,97(5-8):2697-2702. doi: 10.1007/s00170-018-2164-x
    [88] LIU X F, WU D B, ZHANG J H. Fabrication of micro-textured surface using feed-direction ultrasonic vibration-assisted turning [J]. The International Journal of Advanced Manufacturing Technology,2018,97:3849-3857. doi: 10.1007/s00170-018-2082-y
    [89] XU S L, SHIMADA K, MIZUTANI M, et al. Analysis of machinable structures and their wettability of rotary ultrasonic texturing method [J]. Chinese Journal of Mechanical Engineering,2016,29(6):1187-1192. doi: 10.3901/CJME.2016.0910.112
    [90] 赵重阳, 陆俊宇, 王晓博, 等. 超声纵扭辅助铣削高强铝合金表面润湿性能研究 [J]. 中国机械工程,2022,33(16):1912-1918 + 1927. doi: 10.3969/j.issn.1004-132X.2022.16.004

    ZHAO Chongyang, LU Junyu, WANG Xiaobo, et al. Wettability of high-performance aluminum alloy surfaces machined longitudinal-torsion ultrasonic-assisted milling [J]. China Mechanical Engineering,2022,33(16):1912-1918 + 1927. doi: 10.3969/j.issn.1004-132X.2022.16.004
    [91] GUO P, YANG Y. A novel realization of diffractive optically variable devices using ultrasonic modulation cutting [J]. CIRP Annals-Manufacturing Technology,2019,68:575-578. doi: 10.1016/j.cirp.2019.04.014
    [92] WANG J J, WANG Y K, YANG Y. Fabrication of structurally colored basso-relievo with modulated elliptical vibration texturing [J]. Precision Engineering,2020,64:113-121. doi: 10.1016/j.precisioneng.2020.03.021
  • 加载中
图(32)
计量
  • 文章访问数:  1193
  • HTML全文浏览量:  366
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 修回日期:  2023-07-18
  • 录用日期:  2023-07-20
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回