CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散元法的磁性磨粒干压成型工艺参数优化

崔子含 高慧敏 陈燕 程海东 韩冰

崔子含, 高慧敏, 陈燕, 程海东, 韩冰. 基于离散元法的磁性磨粒干压成型工艺参数优化[J]. 金刚石与磨料磨具工程, 2024, 44(1): 57-65. doi: 10.13394/j.cnki.jgszz.2023.0075
引用本文: 崔子含, 高慧敏, 陈燕, 程海东, 韩冰. 基于离散元法的磁性磨粒干压成型工艺参数优化[J]. 金刚石与磨料磨具工程, 2024, 44(1): 57-65. doi: 10.13394/j.cnki.jgszz.2023.0075
CUI Zihan, GAO Huimin, CHEN Yan, CHENG Haidong, HAN Bing. Optimization of dry compression molding process parameters for magnetic abrasive grains based on discrete element method[J]. Diamond & Abrasives Engineering, 2024, 44(1): 57-65. doi: 10.13394/j.cnki.jgszz.2023.0075
Citation: CUI Zihan, GAO Huimin, CHEN Yan, CHENG Haidong, HAN Bing. Optimization of dry compression molding process parameters for magnetic abrasive grains based on discrete element method[J]. Diamond & Abrasives Engineering, 2024, 44(1): 57-65. doi: 10.13394/j.cnki.jgszz.2023.0075

基于离散元法的磁性磨粒干压成型工艺参数优化

doi: 10.13394/j.cnki.jgszz.2023.0075
基金项目: 国家自然科学基金(51775258); 辽宁省自然科学基金重点项目(20170540458); 精密与特种加工教育部重点实验室基金(B201703); 辽宁科技大学省级重点实验室课题基金(2023FW0204,2022100305)。
详细信息
    作者简介:

    韩冰,1975年生,博士、教授。主要研究方向:精密加工。E-mail:hanb75@126.com

  • 中图分类号: TG73

Optimization of dry compression molding process parameters for magnetic abrasive grains based on discrete element method

  • 摘要: 为探究磁性磨粒坯体压制阶段的各工艺参数对其成型质量的影响,优化磁性磨粒的烧结法制备参数,制备出质量优良的磁性磨粒,以铁基氧化铝磁性磨粒为研究对象,建立磁性磨粒干压成型的离散元模型。通过改变压制力、压制方式、摩擦系数、模具高径比等工艺参数,探究其对磁性磨粒坯体成型质量的影响,并实现压制过程中工艺参数的优化。结果表明:压制力越大,坯体孔隙率越小,但压制力过大,坯体外表面产生裂痕,影响坯体表面形貌的完整性,故宜选择75~125 MPa的压制力;双向压制得到的坯体密度更均匀、力学性能更好;模具的高径比越大,坯体的孔隙率相对较大,坯体的轴向应力相对较小;磨料颗粒间摩擦系数及侧壁与磨料颗粒之间的摩擦系数越小,坯体的孔隙率越小、致密度越好,坯体的均匀性也越好。在磁性磨粒混合阶段加入适量润滑液,可适当减小磨料颗粒间及颗粒与模具侧壁间的摩擦系数,进而提高磨粒坯体质量。

     

  • 图  1  离散元单元

    Figure  1.  Discrete element unit

    图  2  干压成型的离散元模型

    Figure  2.  Discrete element model of dry press forming

    图  3  测量圆分布示意图

    Figure  3.  Schematic diagram of measurement circle distribution

    图  4  不同压制力下磁性磨粒的位移变化云图

    Figure  4.  Displacement variations nephograms of magnetic abrasive particles under different pressing forces

    图  5  最大位移随压制力的变化

    Figure  5.  Variation of maximum displacement with pressing force

    图  6  孔隙率随压制力的变化

    Figure  6.  Change of porosity with pressing force

    图  7  不同压制力下的试验结果

    Figure  7.  Experimental results under different pressing forces

    图  8  不同压制方式下的磁性磨粒位移变化

    Figure  8.  Displacement changes of magnetic abrasive particles under different pressing methods

    图  9  不同压制方式下的磨粒坯体轴向应力分布

    Figure  9.  Axial stress distribution of abrasive green body under different pressing methods

    图  10  不同压制方式下的坯体孔隙率分布

    Figure  10.  Porosity distribution in blank under different pressing methods

    图  11  不同高径比下模具成型坯体的孔隙率

    Figure  11.  Porosity of mould-formed blanks at different height to diameter ratios

    图  12  不同高径比下模具成型坯体的轴向应力

    Figure  12.  Axial stress of mould-formed blanks at different height to diameter ratios

    图  13  侧壁摩擦系数对坯体孔隙率的影响

    Figure  13.  Effect of sidewall friction coefficient on porosity of blank

    图  14  颗粒间摩擦系数对坯体孔隙率的影响

    Figure  14.  Effect of friction coefficient between particles on porosity of blank

  • [1] 袁巨龙, 王志伟, 文东辉, 等. 超精密加工现状综述 [J]. 机械工程学报,2007,43(1):35-48. doi: 10.3321/j.issn:0577-6686.2007.01.006

    YUAN Julong, WANG Zhiwei, WEN Donghui, et al. Review on the current situation of ultra-precision machining [J]. Journal of Mechanical Engineering,2007,43(1):35-48. doi: 10.3321/j.issn:0577-6686.2007.01.006
    [2] 陈燕. 磁粒研磨加工技术及应用 [M]. 北京: 科学出版社, 2021.

    CHEN yan. Magnetic abrasive finishing technology and application [M]. Beijing: Science Press, 2021.
    [3] 赵杨, 陈燕, 吕旖旎, 等. 球形开槽磁极辅助研磨H63黄铜弯管内表面 [J]. 表面技术,2020,49(5):360-367. doi: 10.16490/j.cnki.issn.1001-3660.2020.05.043

    ZHAO Yang, CHEN Yan, LYU Yini, et al. Spherical magnet with ring grooves assisted grinding inner surface of H63 brass bend pipe [J]. Surface Technology,2020,49(5):360-367. doi: 10.16490/j.cnki.issn.1001-3660.2020.05.043
    [4] 刘文浩, 陈燕, 李文龙, 等. 磁粒研磨加工技术的研究进展 [J]. 表面技术,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004

    LIU Wenhao, CHEN Yan, LI Wenlong, et al. Research progress of magnetic abrasive finishing technology [J]. Surface Technology,2021,50(1):47-61. doi: 10.16490/j.cnki.issn.1001-3660.2021.01.004
    [5] QIAN C, FAN Z, TIAN Y, et al. A review on magnetic abrasive finishing [J]. The International Journal of Advanced Manufacturing Technology,2021,112(3):619-634.
    [6] 高小龙. TiC/Fe磁性磨料的制备及其性能研究 [D]. 南京: 南京航空航天大学, 2011.

    GAO Xiaolong. Study on the preparation and properties of TiC/Fe magnetic abrasive grain [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [7] 吕旖旎. 铁基立方氮化硼磁性磨粒的制备工艺及实验研究 [D]. 鞍山: 辽宁科技大学, 2021.

    LYU Yini. Study on preparation process of cBN/Fe magnetic abrasive particles and experiment [D]. Anshan: University of Science and Technology Liaoning, 2021
    [8] 白旭. 磁性磨粒的溶胶—凝胶法制备工艺及其性能研究 [D]. 太原: 太原理工大学, 2019.

    BAI Xu. Preparation and properties of magnetic abrasive particles by sol-gel method [D]. Taiyuan: Taiyuan University of Technology, 2019.
    [9] 秦璞. 雾化法制备CBN/铁基球形复合磁性磨粒形成机制及微结构分析 [D]. 淄博: 山东理工大学, 2019.

    QIN Pu. Formation mechanism and microstructure analysis of CBN/Fe-based spherical composite magnetic abrasive prepared by gas atomization [D]. Zibo: Shandong University of Technology, 2019.
    [10] 康璐. 黏结法制备磁性磨粒的工艺及其性能研究 [D]. 鞍山: 辽宁科技大学, 2019.

    KANG Lu. Study on process and properties of preparation of magnetic abrasive by bonding method [D]. Anshan: University of Science and Technology Liaoning, 2019
    [11] 宫臣. 酸性化学复合镀法制备磁性磨料工艺研究 [D]. 大连: 大连交通大学, 2017.

    GONG Chen. Study on preparation of magnetic abrasives on acidity electroless composite plating [D]. Dalian: Dalian Jiaotong University, 2017.
    [12] 李德刚, 白清顺, 梁迎春, 等. 基于分子动力学的单晶硅纳米振动切削过程 [J]. 纳米技术与精密工程,2007,5(3):205-210. doi: 10.13494/j.npe.2007.043

    LI Degang, BAI Qingshun, LIANG Yingchun, et al. Nano-vibration cutting process of single crystal silicon by molecular dynamics [J]. Nanotechnology and Precision Engineering,2007,5(3):205-210. doi: 10.13494/j.npe.2007.043
    [13] 王涛, 韩俊辉, 朱永生, 等. PFC 2D/3D颗粒离散元计算方法及应用 [M]. 北京: 中国建筑工业出版社, 2020.

    WANG Tao, HAN Junhui, ZHU Yongsheng, et al. PFC2D/3D particle discrete element calculation method and application [M] Beijing: China Architecture & Building Press, 2020.
    [14] YAN D, YU J, WANG Y, et al. Soil particle modeling and parameter calibration based on discrete element method [J]. Agriculture, 2022, 12(9).
    [15] 焦玉勇, 王浩, 马江锋. 土石混合体力学特性的颗粒离散元双轴试验模拟研究 [J]. 岩石力学与工程学报,2015,34(S1):3564-3573. doi: 10.13722/j.cnki.jrme.2014.0449

    JIAO Yuyong, WANG Hao, MA Jiangfeng. Research on biaxial test of mechanical characteristics on soil-rock aggregate(sra) based on particle flow code simulation [J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):3564-3573. doi: 10.13722/j.cnki.jrme.2014.0449
    [16] 刘新荣, 杜立兵, 邓志云. 基于多因素椭圆堆叠的岩土细观建模方法 [J]. 岩土力学,2020,41(11):3797-3809. doi: 10.16285/j.rsm.2020.0143

    LIU Xinrong, DU Libing, DENG Zhiyun. Mesostructure modeling for rock and soil based on ellipse packing with multiple prescribed distribution [J]. Rock and Soil Mechanics,2020,41(11):3797-3809. doi: 10.16285/j.rsm.2020.0143
    [17] 王志成, 李文辉, 李秀红等. 整体叶盘回转辅助水平振动式抛磨的颗粒力学行为仿真分析 [J]. 金刚石与磨料磨具工程,2022,42(5):617-625. doi: 10.13394/j.cnki.jgszz.2022.0051

    WANG Zhicheng, LI Wenhui, LI Xiuhong, et al. Simulation analysis of particle mechanical behavior in rotary-assisted horizontal vibration polishing of blisk [J]. Diamond & Abrasives Engineering,2022,42(5):617-625. doi: 10.13394/j.cnki.jgszz.2022.0051
    [18] CUNDALL P A. A computer model for simulation progressive, large-scale movements in block rock systems: Proceedings of symposium of international society of rock mechanics [C]. Nancy: France, 1971.
    [19] FU T F, XU T, HEAP M J, et al. Mesoscopic time-dependent behavior of rocks based on three-dimensional discrete element grain-based model [J]. Computers and Geotechnics, 2020, 121: 103472.
    [20] 耿佳弟, 陈五一, 彭志松. 基于离散元的岩土基坑边坡渗流耦合计算仿真 [J]. 计算机仿真,2021,38(4):240-243, 482. doi: 10.3969/j.issn.1006-9348.2021.04.048

    GENG Jiadi, CHEN Wuyi, PENG Zhisong. Numerical simulation of seepage coupling of rock and soil foundation pit slope based on discrete element method [J]. Computer Simulation,2021,38(4):240-243, 482. doi: 10.3969/j.issn.1006-9348.2021.04.048
    [21] 夏晓光, 段国林. 功能梯度材料增材制造技术的研究进展及展望 [J]. 材料导报,2022,36(10):134-140.

    XIA Xiaoguang, DUAN Guolin. Advances and prospects of additive manufacturing technology of functionally graded materia [J]. Materials Reports,2022,36(10):134-140.
    [22] LIN K, XIONG X J, YANG X, et al. Self-adapting extraction of matrix mineral bulk modulus and verifi cation of fl uid substitution [J]. Applied Geophysics,2011,8(2):110-116, 176. doi: 10.1007/s11770-011-0278-0
    [23] 王继辉, 张清杰, 吴代华. 金属-陶瓷梯度材料的优化设计 [M]. 武汉: 武汉工业大学出版社, 1994.

    WANG Jihui, ZHANG Qingjie, WU Daihua. Optimization design of metal ceramic gradient materials [M]. Wuhan: Wuhan University of Technology Press, 1994.
  • 加载中
图(14)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  165
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-05-02
  • 刊出日期:  2024-02-20

目录

    /

    返回文章
    返回