Abstract:
The effects of boron concentration and deposition pressure on the microstructure and electrochemical oxidation performance of Ti/BDD electrodes during HFCVD growth were systematically investigated. The surface morphology, composition and electrochemical performance of the electrode were characterized by Scanning electron microscope (SEM), Raman spectroscopy, ultraviolet spectrophotometer, and electrochemical workstation. Tetracycline was used as a simulated pollutant to explore the electrochemical oxidation degradation performance of BDD electrodes prepared with different boron concentration and deposition pressure. With the increase of air pressure, the grain quality of the diamond decreases gradually, but the boron atom doping will improve the grain quality of the diamond. Under the condition of high boron concentration and low pressure, the boron atom concentration on the surface of diamond film is higher, and the electrode with high boron atom concentration has better electrochemical performance, higher degradation efficiency, and lower degradation energy consumption.