CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂元素 X (B、Al、Sn、Co) 对 IDB-X / Diamond 界面结合性能的影响

简小刚 姚文山 张毅 梁晓伟 胡吉博 陈哲 陈茂林

简小刚, 姚文山, 张毅, 梁晓伟, 胡吉博, 陈哲, 陈茂林. 掺杂元素 X (B、Al、Sn、Co) 对 IDB-X / Diamond 界面结合性能的影响[J]. 金刚石与磨料磨具工程, 2025, 45(1): 37-45. doi: 10.13394/j.cnki.jgszz.2023.0068
引用本文: 简小刚, 姚文山, 张毅, 梁晓伟, 胡吉博, 陈哲, 陈茂林. 掺杂元素 X (B、Al、Sn、Co) 对 IDB-X / Diamond 界面结合性能的影响[J]. 金刚石与磨料磨具工程, 2025, 45(1): 37-45. doi: 10.13394/j.cnki.jgszz.2023.0068
JIAN Xiaogang, YAO Wenshan, ZHANG Yi, LIANG Xiaowei, HU Jibo, CHEN Zhe, CHEN Maolin. Effect of doped elements X (B, Al, Sn, Co) on binding performance of IDB-X/Diamond interface[J]. Diamond & Abrasives Engineering, 2025, 45(1): 37-45. doi: 10.13394/j.cnki.jgszz.2023.0068
Citation: JIAN Xiaogang, YAO Wenshan, ZHANG Yi, LIANG Xiaowei, HU Jibo, CHEN Zhe, CHEN Maolin. Effect of doped elements X (B, Al, Sn, Co) on binding performance of IDB-X/Diamond interface[J]. Diamond & Abrasives Engineering, 2025, 45(1): 37-45. doi: 10.13394/j.cnki.jgszz.2023.0068

掺杂元素 X (B、Al、Sn、Co) 对 IDB-X / Diamond 界面结合性能的影响

doi: 10.13394/j.cnki.jgszz.2023.0068
基金项目: 国家自然科学基金(51275358);中央高校专项基金(20140750)。
详细信息
    作者简介:

    通信作者:简小刚,男,1975年生,博士、副教授。主要研究方向:涂层制备与性能检测。E-mail:jianxgg@tongji.edu.cn

  • 中图分类号: TQ164;TG58;TG74

Effect of doped elements X (B, Al, Sn, Co) on binding performance of IDB-X/Diamond interface

  • 摘要: 基于量子力学第一性原理,建立了IDB-B/Diamond、IDB-Al/Diamond、IDB-Sn/Diamond和IDB-Co/Diamond 4种膜基界面模型,计算了膜基界面结合能、差分电荷密度和布居数,以探究孕镶金刚石钻头(impregnated diamond bits, IDB)基体中的常用元素X(X = B、Al、Sn、Co)对 IDB-X/Diamond膜基结合强度的影响机制。计算结果表明:膜基界面结合能大小为Wad-B > Wad-Al > Wad-Co > Wad-Sn;B、Al是增强膜基结合强度的有益元素,因为B、Al原子的电荷主要转移到掺杂位点附近的C1~C3原子,其与C1~C3原子的键合作用强;Sn、Co会削弱膜基结合强度,这是由于Sn、Co原子与C1~C3原子的键合作用弱,同时膜基界面间的其他C原子因俘获电荷而相斥。压痕对比的实验结果与仿真结论相符。

     

  • 图  1  替换位点示意图

    Figure  1.  Schematic diagram of replacement site

    图  2  IDB-X/Diamond膜基界面模型图

    Figure  2.  IDB-X/Diamond membrane-based interface model diagram

    图  3  结构优化后的IDB-X/Diamond膜基界面模型

    Figure  3.  Optimized structure of IDB-X/Diamond membrane-based interface model

    图  4  电荷取样及布居点位图

    Figure  4.  Charge sampling and Mulliken population point bitmap

    图  5  IDB-X/Diamond膜基界面差分电荷分布图

    Figure  5.  Differential charge distribution at IDB-X/Diamond membrane-based interface

    图  6  压痕形貌

    Figure  6.  Indentation morphology

    表  1  IDB-X/Diamond膜基界面结合能

    Table  1.   IDB-X/Diamond membrane-based interface binding energy

    掺杂元素 X EIDB-X / eV EDiamond / eV EIDB-X/Diamond / eV A / Å Wad-X /(J·m−2
    B 6773.67 6913.28 13728.42 56.90 11.68
    Al 6738.01 13686.58 9.94
    Co 8709.79 15649.28 7.38
    Sn 6812.62 13750.23 6.85
    下载: 导出CSV

    表  2  原子布居数

    Table  2.   Mulliken atomic population

    掺杂元素X 原子种类 原子布居数 失电荷数 φ 有效电荷利用率 λ / %
    s p d 总电子数 n
    B C1 1.13 3.08 0.00 4.21 −0.21e 98
    B 0.70 1.71 0.00 2.41 0.59e
    C2 1.16 3.02 0.00 4.18 −0.18e
    C3 1.16 3.03 0.00 4.19 −0.19e
    Al C1 1.21 3.22 0.00 4.43 −0.43e 58
    Al 0.57 0.54 0.00 1.11 1.89e
    C2 1.17 3.19 0.00 4.36 −0.36e
    C3 1.16 3.15 0.00 4.31 −0.31e
    Sn C1 1.16 3.18 0.00 4.34 −0.34e 43
    Sn 0.48 1.46 0.00 1.94 2.06e
    C2 1.16 3.11 0.00 4.27 −0.27e
    C3 1.15 3.13 0.00 4.28 −0.28e
    Co C1 1.23 3.00 0.00 4.23 −0.23e 39
    Co 0.10 −0.60 7.79 7.29 1.71e
    C2 1.19 3.03 0.00 4.22 −0.22e
    C3 1.16 3.05 0.00 4.21 −0.21e
    注:有效电荷利用率 = [−(φC1 + φC2 + φC3) / φX] ×100%,X = B、Al、Sn、Co。
    下载: 导出CSV

    表  3  化学键重叠布居数

    Table  3.   Overlapping population of chemical bonds

    掺杂元素X 重叠布居数 键长 / Å
    B C1—B 1.07 1.490
    C2—B 0.87 1.550
    C3—B 0.87 1.540
    Al C1—Al 0.60 1.822
    C2—Al 0.57 1.858
    C3—Al 0.03 1.955
    Sn C1—Sn 0.53 1.923
    C2—Sn 0.38 1.995
    C3—Sn 0.36 1.989
    Co C1—Co 0.26 1.882
    C2—Co −0.17 1.886
    C3—Co 0.24 1.907
    下载: 导出CSV
  • [1] WANG H G, HUANG H C, BI W X, et al. Deep and ultra-deep oil and gas well drilling technologies: Progress and prospect [J]. Natural Gas Industry B,2022,9(2):141-157. doi: 10.1016/j.ngib.2021.08.019
    [2] 李梦. 无硬质相胎体仿生异型齿孕镶金刚石钻头研究 [D]. 长春: 吉林大学, 2017.

    LI Meng. Research on no-hardphase-matrix impregnated diamond bit with bionic abnormal shape [D]. Changchun: Jilin University, 2017.
    [3] HSIEH Y Z, LIN S T. Diamond tool bits with iron alloys as the binding matrices [J]. Materials Chemistry and Physics,2001,72(2):121-125. doi: 10.1016/S0254-0584(01)00419-9
    [4] 高雅. Ni、Sn对Fe基金刚石工具胎体组织及性能影响[D]. 北京: 机械科学研究总院, 2018.

    GAO Ya. Influence of Nickel and Tin on the microstructure and performance of Fe-based matrixes for diamond tools [D]. Beijing: General Academy of Mechanical Sciences, 2018.
    [5] 王恒, 杨展, 杨洋. 高磷-硼铁基胎体性能研究及应用 [J]. 金刚石与磨料磨具工程,2011,31(2):31-34. doi: 10.3969/j.issn.1006-852X.2011.02.007

    WANG Heng, YANG Zhan, YANG Yang. Study on the performance of high phosphor-boron-iron based matrix and their application [J]. Diamond & Abrasives Engineering,2011,31(2):31-34. doi: 10.3969/j.issn.1006-852X.2011.02.007
    [6] FAN Y M, GUO H, XU J, et al. Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration [J]. International Journal of Minerals, Metallurgy, and Materials,2011,18(4):472-478. doi: 10.1007/s12613-011-0465-2
    [7] 徐小健. 纳米材料改善孕镶金刚石钻头胎体性能研究 [D]. 长春: 吉林大学, 2015.

    XU Xiaojian. The properties study of nano material to improve the impregnated diamond bit matrix [D]. Changchun: Jilin University, 2015.
    [8] LI L, WEI Q P, MA L, et al. Preparation of cemented carbide diamond films by gaseous boronizing pretreatment combines with self-assembly seeding process [J]. International Journal of Refractory Metals and Hard Materials,2020,87:105173. doi: 10.1016/j.ijrmhm.2019.105173
    [9] JOHNSTON J M, BAKER P, CATLEDGE S A. Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers [J]. Diamond and Related Materials,2016,69:114-120. doi: 10.1016/j.diamond.2016.08.006
    [10] YE F, LI Y S, SUN X Y, et al. CVD diamond coating on WC-Co substrate with Al-based interlayer [J]. Surface and Coatings Technology,2016,308:121-127. doi: 10.1016/j.surfcoat.2016.06.088
    [11] PARK J K, LEE H J, LEE W S, et al. Effect of TiAl-based interlayer on the surface morphology and adhesion of nanocrystalline diamond film deposited on WC–Co substrate by hot filament CVD [J]. Surface and Coatings Technology,2014,258:108-113. doi: 10.1016/j.surfcoat.2014.09.053
    [12] LAI W C, WU Y S, CHANG H C, et al. Enhancing the adhesion of diamond films on cobalt-cemented tungsten carbide substrate using tungsten particles via MPCVD system [J]. Journal of Alloys and Compounds,2011,509(12):4433-4438. doi: 10.1016/j.jallcom.2011.01.149
    [13] 简小刚, 何嘉诚, 王俊鹏, 等. 金属元素Co、Fe、Cu、Ti对孕镶金刚石基底CVD金刚石涂层膜基界面结合强度的影响 [J]. 真空科学与技术报,2019,39(1):58-64. doi: 10.13922/j.cnki.cjovst.2019.01.09

    JIAN Xiaogang, HE Jiacheng, WANG Junpeng, et al. Effect of metal dopant on interface adhesion of diamond coating on impregnated diamond substrate: A first principle calculation [J]. Chinese Journal of Vacuum Science and Technology,2019,39(1):58-64. doi: 10.13922/j.cnki.cjovst.2019.01.09
    [14] HU J B, JIAN X G. Mechanism of Co atom point defects on different termination surfaces of WC–Co/diamond interface by first-principles [J]. Modern Physics Letters B,2022,36(19):2250074. doi: 10.1142/S0217984922500749
    [15] 王杨. 硅衬底/铱/外延金刚石的第一性原理计算及实验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021.

    WANG Yang. First-principles calculation and experimental investigation of siliconsubstrate/iridium/epitaxialdiamond [D]. Harbin: Harbin Institute of Technology, 2021.
    [16] YANG J, HUANG J H, FAN D Y, et al. First-principles investigation on the electronic property and bonding configuration of NbC (111)/NbN (111) interface [J]. Journal of Alloys and Compounds,2016,689:874-884. doi: 10.1016/j.jallcom.2016.08.040
    [17] SEGALL M D, SHAH R, PICKARD C J, et al. Population analysis of plane-wave electronic structure calculations of bulk materials [J]. Physical Review B,1996,54(23):16317. doi: 10.1103/PhysRevB.54.16317
    [18] VIDAKIS N, ANTONIADIS A, BILALIS N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds [J]. Journal of Materials Processing Technology,2003,143:481-485. doi: 10.1016/S0924-0136(03)00300-5
    [19] SMITH E J W, PIRACHA A H, FIELD D, et al. Mixed-size diamond seeding for low-thermal-barrier growth of CVD diamond onto GaN and AlN [J]. Carbon,2020,167:620-626. doi: 10.1016/j.carbon.2020.05.050
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  25
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 修回日期:  2023-12-17
  • 录用日期:  2024-04-23
  • 网络出版日期:  2025-03-24
  • 刊出日期:  2025-02-20

目录

    /

    返回文章
    返回