CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

研磨盘运动特性对氮化硅陶瓷球成形影响性分析

葛自强 李颂华 吴玉厚 孙健 田军兴 夏忠贤

葛自强, 李颂华, 吴玉厚, 孙健, 田军兴, 夏忠贤. 研磨盘运动特性对氮化硅陶瓷球成形影响性分析[J]. 金刚石与磨料磨具工程, 2023, 43(6): 750-759. doi: 10.13394/j.cnki.jgszz.2023.0012
引用本文: 葛自强, 李颂华, 吴玉厚, 孙健, 田军兴, 夏忠贤. 研磨盘运动特性对氮化硅陶瓷球成形影响性分析[J]. 金刚石与磨料磨具工程, 2023, 43(6): 750-759. doi: 10.13394/j.cnki.jgszz.2023.0012
GE Ziqiang, LI Songhua, WU Yuhou, SUN Jian, TIAN Junxing, XIA Zhongxian. Study on the influence of grinding disc motion on the forming of silicon nitride ceramic balls[J]. Diamond & Abrasives Engineering, 2023, 43(6): 750-759. doi: 10.13394/j.cnki.jgszz.2023.0012
Citation: GE Ziqiang, LI Songhua, WU Yuhou, SUN Jian, TIAN Junxing, XIA Zhongxian. Study on the influence of grinding disc motion on the forming of silicon nitride ceramic balls[J]. Diamond & Abrasives Engineering, 2023, 43(6): 750-759. doi: 10.13394/j.cnki.jgszz.2023.0012

研磨盘运动特性对氮化硅陶瓷球成形影响性分析

doi: 10.13394/j.cnki.jgszz.2023.0012
详细信息
  • 中图分类号: TG58; TG74

Study on the influence of grinding disc motion on the forming of silicon nitride ceramic balls

  • 摘要: 为提高氮化硅陶瓷球加工精度,提出研磨盘偏摆运动可控的新型锥形柔性支承研磨方式,探究柔性支承研磨方式下陶瓷球成形机理。基于新型研磨方式建立仿真模型,深入分析研磨盘偏摆运动对于氮化硅陶瓷球研磨轨迹与受力状态影响。在搭建的新型锥形柔性支承研磨平台上进行正交实验,进一步分析研磨盘运动特性对球体成形的影响。仿真与实验结果表明:在柔性支承研磨方式下,随着研磨盘偏摆角增大,球体轨迹均匀性标准差从43.58降至35.49,最大接触力提升至初始值的4倍,陶瓷球平均球直径变动量从1.466 μm增至2.382 μm,批直径变动量从4.98 μm增至10.27 μm。研磨盘偏摆运动有利于优化研磨轨迹,但增大了球体受力的不均匀性,不利于改善氮化硅陶瓷球平均球直径变动量与批直径变动量,在实际加工过程中,研磨盘偏摆角需控制在0.02°以内。

     

  • 图  1  非磁流体支承装置示意图

    Figure  1.  Schematic diagram of non-magnetic fluid support device

    图  2  新型研磨装置示意图

    Figure  2.  Schematic diagram of the new grinding device

    图  3  新型研磨装置仿真模型

    Figure  3.  Simulation model of the new grinding device

    图  4  陶瓷球与研磨盘接触示意图

    Figure  4.  Schematic diagram of the contact between ceramic ball and grinding disc

    图  5  陶瓷球自转角速度

    Figure  5.  Angular velocity of ceramic ball rotation

    图  6  陶瓷球自转角速度稳定性分析图

    Figure  6.  Analysis of the stability of the angular velocity of the ceramic ball rotation

    图  7  陶瓷球自转角变化示意图

    Figure  7.  Schematic diagram of the change in rotation angle of the ceramic ball

    图  8  陶瓷球轨迹线与微观表面对比图

    Figure  8.  Ceramic ball trajectory line versus microscopic surface

    图  9  陶瓷球研磨轨迹与轨迹点统计

    Figure  9.  Ceramic ball grinding trajectory and trajectory point statistics

    图  10  不同偏摆角下研磨轨迹点分布标准差

    Figure  10.  Standard deviation of grinding track point distribution at different deflection angles

    图  11  接触力变化趋势图

    Figure  11.  Trend of contact force

    图  12  新型研磨装置实验平台

    Figure  12.  Test platform for new grinding device

    图  13  研磨前后的陶瓷球对比图

    Figure  13.  Comparison of ceramic balls before and after grinding

    图  14  研磨盘偏摆对平均球直径变动量与批直径变动量影响

    Figure  14.  Effect of grinding disc deflection on the amount of average ball diameter variation and batch diameter variation

    图  15  研磨盘转速对平均球直径变动量与批直径变动量影响

    Figure  15.  Effect of grinding disc speed on the amount of average ball diameter variation and batch diameter variation

    图  16  研磨压力对平均球直径变动量与批直径变动量影响

    Figure  16.  Effect of grinding pressure on the amount of average ball diameter variation and batch diameter variation

    图  17  研磨液浓度对平均球直径变动量与批直径变动量影响

    Figure  17.  Effect of abrasive concentration on the amount of average ball diameter variation and batch diameter variation

    表  1  氮化硅陶瓷球物理性能

    Table  1.   Physical properties of silicon nitride ceramic ball

    参数参数值
    密度 ρ / (g∙cm−3)3.26
    弹性模量 E / GPa310
    硬度 H / GPa16
    泊松比 ε0.25
    断裂韧性 KIC / (MPa∙m−2)7.0
    热膨胀系数 λ / K−13.2 × 10−6
    下载: 导出CSV

    表  2  正交实验因素水平表

    Table  2.   Table of orthogonal experimental factor levels

    水平因素
    下盘偏摆角
    θ / (°)
    A
    研磨盘转速
    n / (r·min−1)
    B
    压力
    F / N
    C
    质量浓度
    c / %
    D
    10.02 8010 5
    20.111202010
    30.441603015
    下载: 导出CSV

    表  3  平均球直径变动量正交回应表

    Table  3.   Orthogonal response table for mean average ball diameter variation

    水平因素
    下盘偏
    摆角A
    转速
    B
    压力
    C
    研磨液质量
    浓度D
    11.4662.4022.1812.065
    22.3041.9762.0492.013
    32.3821.7741.9212.074
    极差0.9160.6280.2600.061
    下载: 导出CSV

    表  4  批直径变动量正交回应表

    Table  4.   Orthogonal response table for batch diameter variation

    水平因素
    下盘偏
    摆角A
    转速
    B
    压力
    C
    研磨液
    浓度D
    1 4.989.786.738.83
    210.889.679.908.58
    310.276.689.538.72
    极差 5.903.103.170.25
    下载: 导出CSV
  • [1] 孙健, 陈伟, 姚金梅, 等. Si3N4陶瓷球研磨轨迹分析及其对表面质量影响机制研究 [J]. 表面技术, 2023, 52(1): 253-265.

    SUN Jian, CHEN Wei, YAO Jinmei, et al. Analysis of grinding trajectories of Si3N4 ceramic balls and study of its influence mechanism on surface quality [J]. Surface Technology, 2023, 52(1): 253-265.
    [2] HU F, XIE Z P, ZHANG J, et al. Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics [J]. Rare Metals,2020,39(5):11-26.
    [3] 张珂, 王定文, 李颂华, 等. 氮化硅陶瓷球研磨去除方式 [J]. 金刚石与磨料磨具工程,2019,39(3):38-44.

    ZHANG Ke, WANG Dingwen, LI Songhua, et al. Grinding removal method of silicon nitride ceramic balls [J]. Diamond & Abrasives Engineering,2019,39(3):38-44.
    [4] 李声超, 邓朝晖, 万林林, 等. 氮化硅陶瓷球面磨削表面破碎损伤研究 [J]. 金刚石与磨料磨具工程,2013,33(1):70-74.

    LI Shengchao, DENG Zhaohui, WAN Linlin, et al. Study on surface fragmentation damage of silicon nitride ceramic spherical grinding [J]. Diamond & Abrasives Engineering,2013,33(1):70-74.
    [5] LEVESQUE G, ARAKERE N K. An investigation of partial cone cracks in silicon nitride balls [J]. International Journal of Solids and Structures,2008,45(25):6301-6315.
    [6] KANG J, HADFIELD M. The effects of lapping load in finishing advanced ceramic balls on a novel eccentric lapping machine [J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture,2005,219(7):505-513. doi: 10.1243/095440505X32427
    [7] WU Y H, LI S H, ZHANG K. Lapping machining of high-speed and high-precision ceramic bearing balls [J]. Key Engineering Materials, 2005, 291-292: 325-330.
    [8] LV B H, YUAN J L, CHENG F, et al. Influence of supporting characteristics on sphericity of ceramic balls in rotated dual-plates lapping process [J]. Advanced Materials Research, 2009, 69/70: 69-73.
    [9] ZHOU F, YAO W, YUAN J, et al. Establishment of material removal model for lapping ceramic balls with variable-radius groove plate [J]. The International Journal of Advanced Manufacturing Technology,2020,111:2577-2587. doi: 10.1007/s00170-020-06259-w
    [10] ZHOU F, YUAN J, LYU B H, et al. Kinematics and trajectory in processing precision balls with eccentric plate and variable-radius V-groove [J]. The International Journal of Advanced Manufacturing Technology,2016,84(9):2167-2178.
    [11] UMEHARA N, KIRTANE T, GERLICK R, et al. A new apparatus for finishing large size/large batch silicon nitride (Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP) [J]. International Journal of Machine Tools & Manufacture,2006,46(2):151-169.
    [12] CHILDS T, MOSS D J. Grinding ratio and cost issues in magnetic and non-magnetic fluid grinding [J]. CIRP Annals - Manufacturing Technology,2000,49(1):261-264. doi: 10.1016/S0007-8506(07)62942-4
    [13] BO Z, NAKAJIMA A. Dynamics of magnetic fluid support grinding of Si3N4 ceramic balls for ultraprecision bearings and its importance in spherical surface generation [J]. Precision Engineering,2003,27(1):1-8. doi: 10.1016/S0141-6359(02)00152-6
    [14] 马红毅, 麻辉. 实现加工中心机床俯仰、偏摆、倾斜的自动测量 [J]. 制造技术与机床,2009(9):31-35.

    MA Hongyi, MA Hui. Automatic measurement of pitch, deflection and tilt of machining centre machines [J]. Manufacturing Technology and Machine Tools,2009(9):31-35.
    [15] 汤科锋. 双自转研磨方式下研磨成球机理的研究 [D]. 杭州: 浙江工业大学, 2010.

    TANG Kefeng. Study on the mechanism of pellet formation under double rotation grinding [D]. Hangzhou: Zhejiang University of Technology, 2010
    [16] 吴天凤, 李莉, 杨洪涛. 数控机床XY工作台单向运动二维阿贝误差分析与建模 [J]. 光学精密工程,2021,29(2):329-337. doi: 10.37188/OPE.20212902.0329

    WU Tianfeng, LI Li, YANG Hongtao. Analysis and modeling of two-dimensional Abbe error in unidirectional motion of XY table of CNC machine tools [J]. Optical Precision Engineering,2021,29(2):329-337. doi: 10.37188/OPE.20212902.0329
    [17] 张珂, 徐湘辉, 吴玉厚, 等. 精密陶瓷球的锥形研磨技术研究 [J]. 金刚石与磨料磨具工程,2005(2):39-42. doi: 10.3969/j.issn.1006-852X.2005.02.012

    ZHANG Ke, XU Xianghui, WU Yuhou, et al. Research on conical grinding technology of precision ceramic balls [J]. Diamond & Abrasives Engineering,2005(2):39-42. doi: 10.3969/j.issn.1006-852X.2005.02.012
    [18] 常敏, 吕冰海, 王志伟, 等. 陶瓷球研磨成型机理的研究 [J]. 机械工程师,2003(9):47-50.

    CHANG Min, LYU Binghai, WANG Zhiwei, et al. Study on the mechanism of ceramic ball grinding and forming [J]. Mechanical Engineer,2003(9):47-50.
    [19] 聂兰芳, 赵学军. 钢球加工成圆条件及其影响因素探讨 [J]. 轴承,2001(1):16-18.

    NIE Lanfang, ZHAO Xuejun. The rounding conditions of steel balls and their influencing factors [J]. Bearings,2001(1):16-18.
    [20] 朱晨. 钢球研磨力学原理 [M]. 郑州: 河南科学技术出版社, 1995.

    ZHU Chen. Principles of steel ball grinding mechanics [M]. Zhengzhou: Henan Science and Technology Press, 1995.
    [21] 吴玉厚, 沙勇, 李颂华, 等. 氮化硅陶瓷球研磨过程中微磨料磨损形式的转变 [J]. 兵器材料科学与工程,2021,44(3):49-57. doi: 10.14024/j.cnki.1004-244x.20210312.001

    WU Yuhou, SHA Yong, LI Songhua, et al. Transformation of micro-abrasive wear forms in silicon nitride ceramic ball grinding process [J]. Weapons Materials Science and Engineering,2021,44(3):49-57. doi: 10.14024/j.cnki.1004-244x.20210312.001
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  187
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-29
  • 修回日期:  2023-04-08
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回