CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型KTN衬底上生长金刚石及其光催化性能研究

栾玉翰 李天蔚 王旭平 郝建新 赵洪阳 付秋明 陶洪 高登 马志斌

栾玉翰, 李天蔚, 王旭平, 郝建新, 赵洪阳, 付秋明, 陶洪, 高登, 马志斌. 新型KTN衬底上生长金刚石及其光催化性能研究[J]. 金刚石与磨料磨具工程, 2024, 44(1): 9-14. doi: 10.13394/j.cnki.jgszz.2023.0007
引用本文: 栾玉翰, 李天蔚, 王旭平, 郝建新, 赵洪阳, 付秋明, 陶洪, 高登, 马志斌. 新型KTN衬底上生长金刚石及其光催化性能研究[J]. 金刚石与磨料磨具工程, 2024, 44(1): 9-14. doi: 10.13394/j.cnki.jgszz.2023.0007
LUAN Yuhan, LI Tianwei, WANG Xuping, HAO Jianxin, ZHAO Hongyang, FU Qiuming, TAO Hong, GAO Deng, MA Zhibin. Diamond grown on KTN substrate and its photocatalytic performance[J]. Diamond & Abrasives Engineering, 2024, 44(1): 9-14. doi: 10.13394/j.cnki.jgszz.2023.0007
Citation: LUAN Yuhan, LI Tianwei, WANG Xuping, HAO Jianxin, ZHAO Hongyang, FU Qiuming, TAO Hong, GAO Deng, MA Zhibin. Diamond grown on KTN substrate and its photocatalytic performance[J]. Diamond & Abrasives Engineering, 2024, 44(1): 9-14. doi: 10.13394/j.cnki.jgszz.2023.0007

新型KTN衬底上生长金刚石及其光催化性能研究

doi: 10.13394/j.cnki.jgszz.2023.0007
详细信息
    通讯作者:

    赵洪阳,女,1980年生,教授、硕士生导师。主要研究方向:功能晶体及等离子体技术应用。E-mail: zhaohy@wit.edu.cn

  • 中图分类号: TQ164;TG74

Diamond grown on KTN substrate and its photocatalytic performance

  • 摘要:

    采用微波等离子体化学气相沉积技术,以钽铌酸钾(KTa1-xNbxO3,简称KTN)作为衬底,生长高质量金刚石薄膜。用X射线衍射仪、扫描电子显微镜和拉曼光谱仪观察并分析金刚石薄膜的表面形貌和微观结构,并研究样品的光催化性能。结果表明:金刚石生长过程中形成了碳化钽过渡层;随着生长时间延长金刚石质量不断提高;所有样品均表现出良好的降解罗丹明B的能力,其中生长时间为12 h的样品对罗丹明B的降解效率提高了0.29倍,与生长时间为3 h的样品相比其降解效率提高了1.6倍。本研究为生长多晶金刚石提供新型衬底,并探索金刚石在光催化方面的应用。

     

  • 图  1  KTN衬底上生长金刚石的晶体结构

    Figure  1.  Crystal structure of growing diamond on KTN substrate

    图  2  在KTN衬底生长上的金刚石薄膜的等离子体诊断光谱(a)和拉曼光谱(b)

    Figure  2.  Emission spectrum (a) and Raman spectra (b) of diamonds grown on KTN substrate

    图  3  不同生长时间下金刚石的XRD检测结果

    Figure  3.  XRD tests of diamonds with different growth times

    图  4  KTN衬底上不同生长时间下金刚石薄膜的SEM

    Figure  4.  SEM of samples with different growth times on KTN substrate

    图  5  (a)不同生长时间样品的RhB降解曲线;(b)不同生长时间样品对RhB降解速率变化曲线;(c) 12 h样品不同光照时间下降解RhB的紫外−可见吸收光谱;(d) 12 h样品RhB的光降解循环曲线

    Figure  5.  (a) RhB degradation curves of prepared samples; (b) RhB degradation rate curves of samples at different growth times; (c) RhB absorption spectra of diamond under different illumination times; (d) Photodegradation cycle curve of RhB

    表  1  金刚石生长条件

    Table  1.   The growth conditions of diamond

    生长参数类型或取值
    衬底KTN
    气体流量比(CH4∶H2)5∶200
    微波功率 P / W1000
    工作压力 p / kPa14
    温度 T / ℃700
    下载: 导出CSV
  • [1] LIAO M. Progress in semiconductor diamond photod-etectors and MEMS sensors [J]. Functional Diamond,2022,1(1):29-46. doi: 10.1080/26941112.2021.1877019
    [2] LIU J, ZHENG Y, LIN L, et al. Surface conductivity enhancement of H-terminated diamond based on the purified epitaxial diamond layer [J]. Journal of Materials Science,2018,53(18):13030-13041. doi: 10.1007/s10853-018-2579-7
    [3] YANG B, ZHANG R, SHEN Q, et al. Study on the lateral growth of the diamond in the substrate holder and the effect of temperature gradient on the large-area diamond surface morphology [J]. Journal of Materials Science,2020,55(36):17072-17080. doi: 10.1007/s10853-020-05256-4
    [4] BONNAURON M, SAADA S, MER C, et al. Transparent diamond‐on‐glass micro‐electrode arrays for ex‐vivo neuronal study [J]. Physica Status Solidi (A),2008,205(9):2126-2129. doi: 10.1002/pssa.200879733
    [5] LI T, HAO J, CAO W, et al. Designing of room temperature diluted ferromagnetic Fe doped diamond semiconductor [J]. Functional Diamond,2022,2(1):80-83. doi: 10.1080/26941112.2022.2098065
    [6] CAO W, GAO D, ZHAO H, et al. Epitaxial lateral growth of single-crystal diamond under high pressure by a plate-to-plate MPCVD [J]. Functional Diamond,2022,1(1):143-149. doi: 10.1080/26941112.2021.1947750
    [7] SHU G, DAI B, BOLSHAKOV A, et al. Coessential-connection by microwave plasma chemical vapor deposition: a common process towards wafer scale single crystal diamond [J]. Functional Diamond,2022,1(1):47-62. doi: 10.1080/26941112.2020.1869511
    [8] CHEN J, WANG G, QI C, et al. Morphological and structural evolution on the lateral face of the diamond seed by MPCVD homoepitaxial deposition [J]. Journal of Crystal Growth,2018,484:1-6. doi: 10.1016/j.jcrysgro.2017.12.022
    [9] NAD S, GU Y, ASMUSSEN J. Growth strategies for large and high quality single crystal diamond substrates [J]. Diamond and Related Materials,2015,60:26-34. doi: 10.1016/j.diamond.2015.09.018
    [10] LLORET F, GUTIERREZ M, ARAUJO D, et al. MPCVD diamond lateral growth through microterraces to reduce threading dislocations density [J]. Physica Status Solidi (A),2017,214(11):1700242. doi: 10.1002/pssa.201700242
    [11] 李思佳, 冯曙光, 郭胜惠, 等. MPCVD法制备金刚石膜的工艺 [J]. 金刚石与磨料磨具工程,2021,41(6):31-37. doi: 10.13394/j.cnki.jgszz.2021.6.0006

    LI Sijia, FENG Shuguang, GUO Shenghui, et al. Pre-paration technology of diamond film by MPCVD method [J]. Diamond & Abrasives Engineering,2021,41(6):31-37. doi: 10.13394/j.cnki.jgszz.2021.6.0006
    [12] 丁康俊, 马志斌, 宋修曦, 等. 温度对MPCVD法同质外延单晶金刚石缺陷的影响 [J]. 金刚石与磨料磨具工程,2018,38(2):8-11,19. doi: 10.13394/j.cnki.jgszz.2018.2.0002

    DING Kangjun, MA Zhibin, SONG Xiuxi, at al. Effect of temperature on defects in homoepitaxial single crystal diamond by MPCVD [J]. Diamond & Abrasives Engineering,2018,38(2):8-11,19. doi: 10.13394/j.cnki.jgszz.2018.2.0002
    [13] MENG Y, YAN C, KRASNICKI S, et al. High optical quality multicarat single crystal diamond produced by chemical vapor deposition [J]. Physica Status Solidi (A),2012,209(1):101-104. doi: 10.1002/pssa.201127417
    [14] JIANG X, KLAGES C, ROSLER M, et al. Deposition and characterization of diamond epitaxial thin films on silicon substrates [J]. Applied Physics A,1993,57(6):483-489. doi: 10.1007/BF00331746
    [15] FAN Q, PEREIRA E, GRACIO J. Diamond deposition on copper: studies on nucleation, growth, and adhesion behaviours [J]. Journal of Materials Science,1999,34(6):1353-1365. doi: 10.1023/A:1004566502572
    [16] FU Y, YAN B, LOH N, et al. Deposition of diamond coating on pure titanium using micro-wave plasma assisted chemical vapor deposition [J]. Journal of Materials Science,1999,34(10):2269-2283. doi: 10.1023/A:1004569406535
    [17] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers [J]. Scientific Reports,2017,7(1):1-8. doi: 10.1038/s41598-016-0028-x
    [18] BENSALAH H, STENGER I, SAKR G, et al. Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium [J]. Diamond and Related Materials,2016,66:188-195. doi: 10.1016/j.diamond.2016.04.006
    [19] WANG Q, WU G, NEWHOURSE-ILLIGE T, et al. Heteroepitaxial diamond film deposition on KTaO3 substrates via single-crystal iridium buffer layers [J]. Diamond and Related Materials,2020,110:108117. doi: 10.1016/j.diamond.2020.108117
    [20] 赵中琴, 唐伟忠, 苗晋琦, 等. 含金刚石的复相过渡层及Al2O3衬底上金刚石薄膜的附着力 [J]. 金刚石与磨料磨具工程,2004(1):37-40. doi: 10.3969/j.issn.1006-852X.2004.01.010

    ZHAO Zhongqin, TANG Weizhong, MIAO Jinqi, et al. Deposition of a new kind of composite interlayer containing diamond phase and its application in enhancing adhesion of diamond coatings on alumina substrates [J]. Diamond & Abrasives Engineering,2004(1):37-40. doi: 10.3969/j.issn.1006-852X.2004.01.010
    [21] GUAN Q, HU X, WEI J, et al. Growth, etching, polarization and second harmonic generation of potassium lithium tantalate niobate crystals [J]. Journal of Crystal Growth,1999,197(4):1012-1014. doi: 10.1016/S0022-0248(98)00889-6
    [22] WANG X, LIU B, YANG Y, et al. Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1− xNbxO3 crystal [J]. Applied Physics Letters,2014,105(5):051910. doi: 10.1063/1.4892663
    [23] TRIEBWASSER S. Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3 [J]. Physical Review,1959,114(1):63. doi: 10.1103/PhysRev.114.63
    [24] SUZUKI K, SAKAMOTO W, YOGO T, et al. Processing of oriented K (Ta, Nb) O3 films using chemical solution deposition [J]. Journal of the American Ceramic Society,1999,82(6):1463-1466. doi: 10.1111/j.1151-2916.1999.tb01942.x
    [25] WANG X, WANG J, YU Y, et al. Growth of cubic KTa1− xNbxO3 crystal by Czochralski method [J]. Journal of Crystal Growth,2006,293(2):398-403. doi: 10.1016/j.jcrysgro.2006.05.021
    [26] KNIGHT D S, WHITE W. Characterization of diamond films by Raman spectroscopy [J]. Journal of Materials Research,1989,4(2):385-393. doi: 10.1557/JMR.1989.0385
    [27] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond [J]. Science,2002,297(5587):1670-1672. doi: 10.1126/science.1074374
    [28] SU L, CAO Y, HAO H, et al. Emerging applications of nanodiamonds in photocatalysis [J]. Functional Diamond,2022,1(1):93-109. doi: 10.1080/26941112.2020.1869431
    [29] BAGHERI S, JULKAPLI N. Nano-diamond based p-hotocatalysis for solar hydrogen production [J]. International Journal of Hydrogen Energy,2020,45(56):31538-31554. doi: 10.1016/j.ijhydene.2020.08.193
    [30] DUAN X, AO Z, LI D, et al. Surface-tailored nano-diamonds as excellent metal-free catalysts for organic oxidation [J]. Carbon,2016,103:404-411. doi: 10.1016/j.carbon.2016.03.034
    [31] NAVALON S, DHAKSHINAMOORTHY A, ALVARO M, et al. Diamond nanoparticles in heterogeneous catalysis [J]. Chemistry of Materials,2020,32(10):4116-4143. doi: 10.1021/acs.chemmater.0c00204
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  234
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 修回日期:  2023-04-09
  • 录用日期:  2023-04-11
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-02-20

目录

    /

    返回文章
    返回