Interfacial diffusion in TiN0.3/AlN composite
-
摘要: 为研究TiN0.3/AlN复合烧结体中两相界面区域的N原子的扩散现象,通过机械合金化方法制备出非化学计量比TiN0.3,采用放电等离子体烧结技术分层及复合烧结TiN0.3/AlN复合材料,采用金相、XRD、SEM、EDS及TEM等分析表征TiN0.3/AlN复合材料的物相组成、元素分布和组织形貌。结果表明: AlN中的N通过空位扩散机制向TiN0.3中扩散,其扩散程度逐渐减弱;与AlN接触的TiN0.3部分由于吸收了来自AlN中的N使成分接近正常比例的TiN,而远离界面处的部分则接近TiN0.3的成分;在两相结合区域有宽度在1 nm以下的非晶层,其电子衍射斑点出现纵向伸长,产生共格,说明六方结构的AlN晶格向TiN晶格畸变,形成面心立方结构的TiN0.3/AlN。
-
关键词:
- TiN/AlN复合材料 /
- 放电等离子体烧结 /
- 界面扩散 /
- 共格
Abstract: In recent years, extensive research has been conducted on nano-multilayer films of TiN/AlN system. However, there are few reports on its bulk composites. In this study, non-stoichiometric TiN0.3 was prepared by mechanical alloying, then TiN0.3/AlN composites were fabricated through spark plasma sintering (SPS) utilizing both layered and mixed sintering techniques. The phase composition, element distribution and microstructure of TiN0.3/AlN composites were characterized by metallography, XRD, SEM, EDS and TEM, to study the diffusion of N atoms in the interface region of TiN0.3/AlN composites. The results show that N in AlN diffuses into TiN0.3 through a vacancy diffusion mechanism, The area of TiN0.3 in contact with AlN absorbs N from AlN to make the composition close to the normal proportion of TiN, while the area "far away" from the interface is close to the component of TiN0.3, and its diffusion degree weakens gradually. In the two-phase bonding region, there is a thin amorphous layer whose width is less than 1 nm. The electron diffraction pattern elongates longitudinally and produces coherent lattice. The AlN lattice of hexagonal structure is distorted to TiN lattice, forming TiN0.3/AlN with a face-centered cubic structure.-
Key words:
- TiN/AlN composite /
- SPS /
- interface diffusion /
- cohere
-
表 1 TiN和AlN的晶面间距
Table 1. Space between crystal planes of TiN and AlN
类型 (hkl) d / nm TiN 100 0.424 111 0.244 200 0.213 220 0.151 211 0.173 222 0.122 AlN 100 0.270 002 0.249 101 0.237 102 0.183 110 0.156 103 0.141 112 0.132 -
[1] DRYGAŚ M, LEJDA K, JANIK J F, et al. Composite nitride nanoceramics in the system titanium nitride (TiN)-aluminum nitride (AlN) through high pressure and high temperature sintering of synthesis-mixed nanocrystalline powders [J]. Materials,2021,14(3):588. doi: 10.3390/ma14030588 [2] 陈俊云, 赵灼铮, 赵智胜, 等. 新型无粘结剂聚晶氮化硼材料的飞秒激光加工研究 [J]. 燕山大学学报,2020,44(6):7. doi: 10.3969/j.issn.1007-791X.2020.06.001CHEN Junyun, ZHAO Zhuozheng, ZHAO Zhisheng, et al. Femtosecomd laser processing on new binderless polycrystalline boron nitride material [J]. Journal of Yanshan University,2020,44(6):7. doi: 10.3969/j.issn.1007-791X.2020.06.001 [3] ZGALAT-LOZYNSKYY O B, APURBBA K S, YEHOROV I I, et al. cWear-resistant TiN-20wt.% Si3N4 and TiN-20wt.% TiB2 composites produced by microwave sintering [J]. Powder Metallurgy and Metal Ceramics,2021,59(11):611-620. doi: 10.1007/s11106-021-00196-3 [4] 王佳程, 胡继林, 梁波, 等. AlN-Al2O3复合材料制备技术的研究进展 [J]. 中国陶瓷工业,2021,28(3):35-39. doi: 10.13958/j.cnki.ztcg.2021.03.008WANG Jiacheng, HU Jilin, LIANG Bo, et al. Research progress in preparation technology of AlN-Al2O3 composite [J]. China Ceramic Industry,2021,28(3):35-39. doi: 10.13958/j.cnki.ztcg.2021.03.008 [5] 朱建斌, 李佳艳, 姜忆来, 等. 碳纤维增强氮化硅复合材料的制备及介电性能研究 [J]. 中国陶瓷,2021,57(10):35-42.ZHU Jianbin, LI Jiayan, JIANG Yilai, et al. Study on preparation and dielectric properties of carbon fiber reinforced silicon nitride composite [J]. China Ceramics,2021,57(10):35-42. [6] 陈胜男, 林威豪, 汪建勋, 等. 阴极离子镀制备TiN薄膜及其光电性能的研究 [J]. 燕山大学学报,2017,41(4):371-376. doi: 10.3969/j.issn.1007-791X.2017.04.014CHEN Shengnan, LIN Weihao, WANG Jianxun, et al. Study of optical and electrical properties of TiN thin films prepared by cathodic ion sputtering [J]. Journal of Yanshan University,2017,41(4):371-376. doi: 10.3969/j.issn.1007-791X.2017.04.014 [7] SUN N, XU J, ZHOU D, et al. DC reactively sputtered TiNx thin films for capacitor electrodes [J]. Journal of Materials Science: Materials in Electronics,2018,29(12):10170-10176. doi: 10.1007/s10854-018-9066-4 [8] GRIGORIEV S, PRISTINSKIY Y, VOLOSOVA M, et al. Wire electrical discharge machining, mechanical and tribological performance of TiN reinforced multiscale SiAlON ceramic composites fabricated by spark plasma sintering [J]. Applied Sciences,2021,11(2):657. doi: 10.3390/app11020657 [9] RAVI KUMAR K, PRIDHAR T, VETTIVEL S C. Influence on mechanical behaviour and characterization of A6063/Bagasse and titanium nitride hybrid composites [J]. Transactions of the Indian Institute of Metals,2021,74(2):473-486. doi: 10.1007/s12666-020-02143-z [10] MORTALO C, DEAMBROSIS S M, MONTAGNER F, et al. Production strategies of TiNx coatings via reactive high power impulse magnetron sputtering for selective H2 separation [J]. Membranes,2021,11(5):360. doi: 10.3390/membranes11050360 [11] ZHAO S, ZHAO Y, RAN Y, et al. Surface enhanced Raman scattering on ion-beam-deposited TiNx/Si substrates [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2020,472:24-31. doi: 10.1016/j.nimb.2020.03.008 [12] HE Z, ZHANG S, SUN D. Effect of bias on structure mechanical properties and corrosion resistance of TiNx films prepared by ion source assisted magnetron sputtering [J]. Thin Solid Films,2019,676:60-67. doi: 10.1016/j.tsf.2019.02.037 [13] BAIK Y, DREW R A L. Aluminum nitride: Processing and applications [J]. Key Engineering Materials,1996,122-124:553. doi: 10.4028/www.scientific.net/KEM.122-124.553 [14] BEN J, LUO J, LIN Z, et al. Introducing voids around the interlayer of AlN by high temperature annealing [J]. Chinese Physics B,2022,31(7):517-522. doi: 10.1088/1674-1056/ac3d7f [15] JIANG M, SUN H, LIU R, et al. Fabrication and mechanical properties of Ti2AlN/TiAl composite with continuous network structure [J]. Transactions of Nonferrous Metals Society of China,2023,33(5):1437-1451. doi: 10.1016/S1003-6326(23)66194-1 [16] BASKUT S, CINAR A, TURAN S. Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets. [J]. Journal of the European Ceramic Society,2017,37(12):3759. doi: 10.1016/j.jeurceramsoc.2017.03.032 [17] KOUTNÁ N, LÖFLER L, HOLEC D, et al. Atomistic mechanisms underlying plasticity and crack growth in ceramics: A case study of AlN/TiN superlattices [J]. Acta Materialia,2022,229(1):117809. doi: 10.1016/j.actamat.2022.117809 [18] MADAN A, KIM I W, CHENG S C, et al. Stabilization of cubic AlN in epitaxial AlN/TiN superlattices [J]. Physical Review Letters,1997,78(9):1743-1746. doi: 10.1103/PhysRevLett.78.1743 [19] 郑云西. AlN/TiN纳米多层涂层中c-AlN的生长及其热稳定性研究 [D]. 南京: 东南大学, 2020.ZHENG Yunxi. Growth and thermal stability research of cubic AlN in AlN/TiN nano-multilayers [D]. Nanjing: Southeast University, 2020. [20] CHEN Z, HOLEC D, BARTOSIK M, et al. Crystallographic orientation dependent maximum layer thickness of cuboc AlN in CrN/AlN multilayers [J]. Acta Materialia,2019,168:190-202. doi: 10.1016/j.actamat.2019.02.004 [21] DÍAZ J H F, ESPITIA M J R, MARTÍNEZ J A R. Research of the structural and electronic properties of VN/AlN/VN and AlN/VN/AlN based on DFT calculation [J]. Journal of Physics Conference Series,2016,743(1):012004. doi: 10.1088/1742-6596/743/1/012004 [22] LEITH S, VOGEL M, FAN J, et al. Superconducting NbN thin films for use in superconducting radio frequency cavities [J]. Superconductor Science and Technology,2021,34(2):025006. doi: 10.1088/1361-6668/abc73b [23] 孙金峰. MA制备非化学计量比TiCx和TiNx及其烧结特性的研究 [D]. 秦皇岛: 燕山大学, 2010.SUN Jinfeng. Synthesized nonstoichiometric TiCx and TiNx powders by MA and study of the powers sintering property [D]. Qinhuangdao: Yanshan University, 2010. [24] 叶亚男. TiN0.3对难熔化合物烧结界面显微结构与性能的影响 [D]. 秦皇岛: 燕山大学, 2013.YE Ya’nan. The effects of non-stoichiometric TiN0.3 on the interfacial microstructure and mechanical properties of refractory material [D]. Qinhuangda: Yanshan University, 2013. [25] 陈俊云, 刘德辉, 张圣康, 等. 单晶金刚石微铣刀的飞秒激光制造研究 [J]. 燕山大学学报,2022,46(3):200-207. doi: 10.3969/j.issn.1007-791X.2022.03.002CHEN Junfei, LIU Dehui, ZHANG Shengkang, et al. Research on micro-milling tools of single crystal diamond by femtosecond laser technique [J]. Journal of Yanshan University,2022,46(3):200-207. doi: 10.3969/j.issn.1007-791X.2022.03.002 [26] 李青, 王洪超, 屈年瑞, 等. 新型四方相I(4)2m-BCN力学性能的第一性原理研究 [J]. 燕山大学学报,2018,42(6):519-524. doi: 10.3969/j.issn.1007-791X.2018.06.007LI Qing, WANG Hongchao, QU Nianrui, et al. First principle study on mechanical properties of new square phase I42m-BCN [J]. Journal of Yanshan University,2018,42(6):519-524. doi: 10.3969/j.issn.1007-791X.2018.06.007 [27] 邓华, 邢英, 王明智, 等. PCBN烧结体中TiN0.3/AlN与CBN的界面关系研究 [J]. 金刚石与磨料磨具工程,2016,36(3):38-42. doi: 10.13394/j.cnki.jgszz.2016.3.0008DENG Hua, XING Ying, WANG Mingzhi, et al. Research on the interface relation between TiN0.3/AlN and CBN in PCBN sintering body [J]. Diamond & Abrasives Engineering,2016,36(3):38-42. doi: 10.13394/j.cnki.jgszz.2016.3.0008 [28] 罗涛, 江文清, 徐敏. TiN-Al体系结合剂配比对聚晶立方氮化硼复合材料性能的影响 [J]. 机械工程材料,2021,45(11):34-37. doi: 10.11973/jxgccl202111007LUO Tao, JIANG Wenqing, XU Min. Effect of TiN-Al system binder ratio on properties of polycrystalline cubic boron nitride composite [J]. Materials for Mechanical Engineering,2021,45(11):34-37. doi: 10.11973/jxgccl202111007 [29] 叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 北京: 冶金工业出版社, 2002.YE Dalun, HU Jianhua. Practical handbook of inorganic thermodynamic data [M]. Beijing: Metallurgical Industry Press, 2002. (in Chinese) [30] 耶红刚, 陈光德, 竹有章, 等. 六方AlN本征缺陷的第一性原理研究 [J]. 物理学报,2007,9:5376-5380. doi: 10.3321/j.issn:1000-3290.2007.09.065YE Honggang, CHEN Guangde, ZHU Youzhang, et al. First-principles study of intrinsic defects in hexagonal aluminum nitride [J]. Journal of Physics,2007,9:5376-5380. doi: 10.3321/j.issn:1000-3290.2007.09.065 [31] 潘应君, 邓敏, 陈淑花, 等. 多弧离子镀制备TiN/AlN 纳米多层膜及其超硬效应 [J]. 武汉科技大学学报:自然科学版,2008,31(3):312-315. doi: 10.3969/j.issn.1674-3644.2008.03.022PAN Yingjun, DENG Min, CHEN Shuhua, et al. Preparation and ultra micro-hardness of TiN/AlN nano-multilayer deposited by multi-arc ion plating [J]. Journal of Wuhan University of Science and Technology (Natural Science Edition),2008,31(3):312-315. doi: 10.3969/j.issn.1674-3644.2008.03.022 [32] 杨群, 王玉春, 李晓云, 等. 原位法制备AlN-TiN复相陶瓷性能的研究 [J]. 真空电子技术,2016(5):26-29. doi: 10.3969/j.issn.1002-8935.2016.05.007YANG Qun, WANG Yuchun, LI Xiaoyun, et al. Research on AlN-TiN composite prepared by in-situ method [J]. Vacuum Electronics,2016(5):26-29. doi: 10.3969/j.issn.1002-8935.2016.05.007 [33] SETOYAMA M, A. NAKAYAMA, M. TANAKA Formation of cubic-AlN in TiN/AlN superlattice [J]. Surface and Coatings Technology,1996,86-87(1-3):225-230. doi: 10.1016/S0257-8972(96)03033-2 [34] LEE B T, PEZZOTTI G, HIRAGA K. Microstructure and fracture behavior of SiC-platelet-reinforced Si3N4 matrix composites [J]. Materials Science and Engineering A,1994,177(1-2):151-160. doi: 10.1016/0921-5093(94)90487-1 [35] PEZZOTTI G, LEE B T, HIRAGA K, et al. Microscopy investigation on fracture mechanisms in hot-isostatically pressed Si3N4/SiC-platelet composites [J]. Journal of Materials Science,1994,29(7):1786-1794. doi: 10.1007/BF00351297 [36] 黄孝瑛. 电子衍射分析方法 [M]. 北京: 金属材料研究编辑部, 1976.HUANG Xiaoying. Electron diffraction analysis method [M]. Beijing: Editorial Office of Metal Materials Research, 1976. [37] 进藤大辅, 平贺贤二. 材料评价的高分辨电子显微方法 [M]. 刘安生, 译. 北京: 冶金工业出版社, 1998.DAISUKE Shindo, HIRAGA Hyunji. High resolution electron microscopy for material evaluation [M]. Translated by Liu Ansheng. Beijing: Metallurgical Industry Press, 1998.