CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiN0.3/AlN复合烧结界面扩散现象

邹芹 孙俊绒 李艳国 罗永安

邹芹, 孙俊绒, 李艳国, 罗永安. TiN0.3/AlN复合烧结界面扩散现象[J]. 金刚石与磨料磨具工程, 2023, 43(5): 537-545. doi: 10.13394/j.cnki.jgszz.2022.0222
引用本文: 邹芹, 孙俊绒, 李艳国, 罗永安. TiN0.3/AlN复合烧结界面扩散现象[J]. 金刚石与磨料磨具工程, 2023, 43(5): 537-545. doi: 10.13394/j.cnki.jgszz.2022.0222
ZOU Qin, SUN Junrong, LI Yanguo, LUO Yong`an. Interfacial diffusion in TiN0.3/AlN composite[J]. Diamond & Abrasives Engineering, 2023, 43(5): 537-545. doi: 10.13394/j.cnki.jgszz.2022.0222
Citation: ZOU Qin, SUN Junrong, LI Yanguo, LUO Yong`an. Interfacial diffusion in TiN0.3/AlN composite[J]. Diamond & Abrasives Engineering, 2023, 43(5): 537-545. doi: 10.13394/j.cnki.jgszz.2022.0222

TiN0.3/AlN复合烧结界面扩散现象

doi: 10.13394/j.cnki.jgszz.2022.0222
基金项目: 河北省高等学校科学技术研究项目资助项目(ZD2021099)
详细信息
    通讯作者:

    李艳国,男, 1978年生,副研究员。主要从事陶瓷及其复合材料研究。E-mail:lyg@ysu.edu.cn

  • 中图分类号: TB383.3

Interfacial diffusion in TiN0.3/AlN composite

Funds: Projects(ZD2021099) supported by the Science and Technology Project of Hebei Education Department
  • 摘要: 为研究TiN0.3/AlN复合烧结体中两相界面区域的N原子的扩散现象,通过机械合金化方法制备出非化学计量比TiN0.3,采用放电等离子体烧结技术分层及复合烧结TiN0.3/AlN复合材料,采用金相、XRD、SEM、EDS及TEM等分析表征TiN0.3/AlN复合材料的物相组成、元素分布和组织形貌。结果表明: AlN中的N通过空位扩散机制向TiN0.3中扩散,其扩散程度逐渐减弱;与AlN接触的TiN0.3部分由于吸收了来自AlN中的N使成分接近正常比例的TiN,而远离界面处的部分则接近TiN0.3的成分;在两相结合区域有宽度在1 nm以下的非晶层,其电子衍射斑点出现纵向伸长,产生共格,说明六方结构的AlN晶格向TiN晶格畸变,形成面心立方结构的TiN0.3/AlN。

     

  • 图  1  TiN0.3/AlN分层烧结界面的金相图:(a)~(b) 未腐蚀;(c)~(d) 腐蚀

    Figure  1.  Metallurgical microscope images of TiN0.3/AlN by layered sintering: (a)(b) no corrosion, (c)(d) after corrosion

    图  2  TiN0.3/AlN分层烧结界面的SEM图

    Figure  2.  SEM images of TiN0.3/AlN by layed sintering

    图  3  TiN0.3/AlN分层烧结体界面各元素分布 (a)分布范围;(b)Ti元素;(c)Al元素;(d)N元素

    Figure  3.  EDS mapping of TiN0.3/AlN: (a) Distribution range; (b) Ti element; (c) Al element; (d) N element

    图  4  TiN0.3/AlN分层烧结体界面各元素分布图:(a) 扫描范围;(b) Ti元素;(c)Al元素;(d) N元素

    Figure  4.  EDS mapping of TiN0.3/AlN: (a) Scan range; (b) Ti element; (c) Al element; (d) N element

    图  5  TiN0.3/AlN混合烧结前后的XRD图

    Figure  5.  XRD of mixed TiN0.3/AlN before and after sintering

    图  6  TiN0.3/AlN混合烧结体中垂直界面的线扫描结果

    Figure  6.  Line scanning results of vertical interface in sintered TiN0.3/AlN mixture

    图  7  TiN0.3/AlN混合烧结体界面的SEM图

    Figure  7.  SEM images of TiN0.3/AlN

    图  8  TiN0.3/AlN混合烧结体相界面EDS线扫描

    Figure  8.  EDS line scanning results of TiN0.3/AlN

    图  9  TiN0.3/AlN相界面处的高分辨电子显微像及电子衍射图

    Figure  9.  TEM and electron diffraction patterns at TiN0.3/AlN interface

    (a) TEM; (b) SED pattern of AlN; (c) SED pattern of TiN

    图  10  TiN0.3/AlN复合材料高分辨电子显微像:(a)晶格条纹像;(b)傅里叶转换

    Figure  10.  High resolution electron microscopic images of TiN0.3/AlN composites: (a) lattice fringe image; (b) Fourier transform

    表  1  TiN和AlN的晶面间距

    Table  1.   Space between crystal planes of TiN and AlN

    类型 (hkl) d / nm
    TiN 100 0.424
    111 0.244
    200 0.213
    220 0.151
    211 0.173
    222 0.122
    AlN 100 0.270
    002 0.249
    101 0.237
    102 0.183
    110 0.156
    103 0.141
    112 0.132
    下载: 导出CSV
  • [1] DRYGAŚ M, LEJDA K, JANIK J F, et al. Composite nitride nanoceramics in the system titanium nitride (TiN)-aluminum nitride (AlN) through high pressure and high temperature sintering of synthesis-mixed nanocrystalline powders [J]. Materials,2021,14(3):588. doi: 10.3390/ma14030588
    [2] 陈俊云, 赵灼铮, 赵智胜, 等. 新型无粘结剂聚晶氮化硼材料的飞秒激光加工研究 [J]. 燕山大学学报,2020,44(6):7. doi: 10.3969/j.issn.1007-791X.2020.06.001

    CHEN Junyun, ZHAO Zhuozheng, ZHAO Zhisheng, et al. Femtosecomd laser processing on new binderless polycrystalline boron nitride material [J]. Journal of Yanshan University,2020,44(6):7. doi: 10.3969/j.issn.1007-791X.2020.06.001
    [3] ZGALAT-LOZYNSKYY O B, APURBBA K S, YEHOROV I I, et al. cWear-resistant TiN-20wt.% Si3N4 and TiN-20wt.% TiB2 composites produced by microwave sintering [J]. Powder Metallurgy and Metal Ceramics,2021,59(11):611-620. doi: 10.1007/s11106-021-00196-3
    [4] 王佳程, 胡继林, 梁波, 等. AlN-Al2O3复合材料制备技术的研究进展 [J]. 中国陶瓷工业,2021,28(3):35-39. doi: 10.13958/j.cnki.ztcg.2021.03.008

    WANG Jiacheng, HU Jilin, LIANG Bo, et al. Research progress in preparation technology of AlN-Al2O3 composite [J]. China Ceramic Industry,2021,28(3):35-39. doi: 10.13958/j.cnki.ztcg.2021.03.008
    [5] 朱建斌, 李佳艳, 姜忆来, 等. 碳纤维增强氮化硅复合材料的制备及介电性能研究 [J]. 中国陶瓷,2021,57(10):35-42.

    ZHU Jianbin, LI Jiayan, JIANG Yilai, et al. Study on preparation and dielectric properties of carbon fiber reinforced silicon nitride composite [J]. China Ceramics,2021,57(10):35-42.
    [6] 陈胜男, 林威豪, 汪建勋, 等. 阴极离子镀制备TiN薄膜及其光电性能的研究 [J]. 燕山大学学报,2017,41(4):371-376. doi: 10.3969/j.issn.1007-791X.2017.04.014

    CHEN Shengnan, LIN Weihao, WANG Jianxun, et al. Study of optical and electrical properties of TiN thin films prepared by cathodic ion sputtering [J]. Journal of Yanshan University,2017,41(4):371-376. doi: 10.3969/j.issn.1007-791X.2017.04.014
    [7] SUN N, XU J, ZHOU D, et al. DC reactively sputtered TiNx thin films for capacitor electrodes [J]. Journal of Materials Science: Materials in Electronics,2018,29(12):10170-10176. doi: 10.1007/s10854-018-9066-4
    [8] GRIGORIEV S, PRISTINSKIY Y, VOLOSOVA M, et al. Wire electrical discharge machining, mechanical and tribological performance of TiN reinforced multiscale SiAlON ceramic composites fabricated by spark plasma sintering [J]. Applied Sciences,2021,11(2):657. doi: 10.3390/app11020657
    [9] RAVI KUMAR K, PRIDHAR T, VETTIVEL S C. Influence on mechanical behaviour and characterization of A6063/Bagasse and titanium nitride hybrid composites [J]. Transactions of the Indian Institute of Metals,2021,74(2):473-486. doi: 10.1007/s12666-020-02143-z
    [10] MORTALO C, DEAMBROSIS S M, MONTAGNER F, et al. Production strategies of TiNx coatings via reactive high power impulse magnetron sputtering for selective H2 separation [J]. Membranes,2021,11(5):360. doi: 10.3390/membranes11050360
    [11] ZHAO S, ZHAO Y, RAN Y, et al. Surface enhanced Raman scattering on ion-beam-deposited TiNx/Si substrates [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2020,472:24-31. doi: 10.1016/j.nimb.2020.03.008
    [12] HE Z, ZHANG S, SUN D. Effect of bias on structure mechanical properties and corrosion resistance of TiNx films prepared by ion source assisted magnetron sputtering [J]. Thin Solid Films,2019,676:60-67. doi: 10.1016/j.tsf.2019.02.037
    [13] BAIK Y, DREW R A L. Aluminum nitride: Processing and applications [J]. Key Engineering Materials,1996,122-124:553. doi: 10.4028/www.scientific.net/KEM.122-124.553
    [14] BEN J, LUO J, LIN Z, et al. Introducing voids around the interlayer of AlN by high temperature annealing [J]. Chinese Physics B,2022,31(7):517-522. doi: 10.1088/1674-1056/ac3d7f
    [15] JIANG M, SUN H, LIU R, et al. Fabrication and mechanical properties of Ti2AlN/TiAl composite with continuous network structure [J]. Transactions of Nonferrous Metals Society of China,2023,33(5):1437-1451. doi: 10.1016/S1003-6326(23)66194-1
    [16] BASKUT S, CINAR A, TURAN S. Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets. [J]. Journal of the European Ceramic Society,2017,37(12):3759. doi: 10.1016/j.jeurceramsoc.2017.03.032
    [17] KOUTNÁ N, LÖFLER L, HOLEC D, et al. Atomistic mechanisms underlying plasticity and crack growth in ceramics: A case study of AlN/TiN superlattices [J]. Acta Materialia,2022,229(1):117809. doi: 10.1016/j.actamat.2022.117809
    [18] MADAN A, KIM I W, CHENG S C, et al. Stabilization of cubic AlN in epitaxial AlN/TiN superlattices [J]. Physical Review Letters,1997,78(9):1743-1746. doi: 10.1103/PhysRevLett.78.1743
    [19] 郑云西. AlN/TiN纳米多层涂层中c-AlN的生长及其热稳定性研究 [D]. 南京: 东南大学, 2020.

    ZHENG Yunxi. Growth and thermal stability research of cubic AlN in AlN/TiN nano-multilayers [D]. Nanjing: Southeast University, 2020.
    [20] CHEN Z, HOLEC D, BARTOSIK M, et al. Crystallographic orientation dependent maximum layer thickness of cuboc AlN in CrN/AlN multilayers [J]. Acta Materialia,2019,168:190-202. doi: 10.1016/j.actamat.2019.02.004
    [21] DÍAZ J H F, ESPITIA M J R, MARTÍNEZ J A R. Research of the structural and electronic properties of VN/AlN/VN and AlN/VN/AlN based on DFT calculation [J]. Journal of Physics Conference Series,2016,743(1):012004. doi: 10.1088/1742-6596/743/1/012004
    [22] LEITH S, VOGEL M, FAN J, et al. Superconducting NbN thin films for use in superconducting radio frequency cavities [J]. Superconductor Science and Technology,2021,34(2):025006. doi: 10.1088/1361-6668/abc73b
    [23] 孙金峰. MA制备非化学计量比TiCx和TiNx及其烧结特性的研究 [D]. 秦皇岛: 燕山大学, 2010.

    SUN Jinfeng. Synthesized nonstoichiometric TiCx and TiNx powders by MA and study of the powers sintering property [D]. Qinhuangdao: Yanshan University, 2010.
    [24] 叶亚男. TiN0.3对难熔化合物烧结界面显微结构与性能的影响 [D]. 秦皇岛: 燕山大学, 2013.

    YE Ya’nan. The effects of non-stoichiometric TiN0.3 on the interfacial microstructure and mechanical properties of refractory material [D]. Qinhuangda: Yanshan University, 2013.
    [25] 陈俊云, 刘德辉, 张圣康, 等. 单晶金刚石微铣刀的飞秒激光制造研究 [J]. 燕山大学学报,2022,46(3):200-207. doi: 10.3969/j.issn.1007-791X.2022.03.002

    CHEN Junfei, LIU Dehui, ZHANG Shengkang, et al. Research on micro-milling tools of single crystal diamond by femtosecond laser technique [J]. Journal of Yanshan University,2022,46(3):200-207. doi: 10.3969/j.issn.1007-791X.2022.03.002
    [26] 李青, 王洪超, 屈年瑞, 等. 新型四方相I(4)2m-BCN力学性能的第一性原理研究 [J]. 燕山大学学报,2018,42(6):519-524. doi: 10.3969/j.issn.1007-791X.2018.06.007

    LI Qing, WANG Hongchao, QU Nianrui, et al. First principle study on mechanical properties of new square phase I42m-BCN [J]. Journal of Yanshan University,2018,42(6):519-524. doi: 10.3969/j.issn.1007-791X.2018.06.007
    [27] 邓华, 邢英, 王明智, 等. PCBN烧结体中TiN0.3/AlN与CBN的界面关系研究 [J]. 金刚石与磨料磨具工程,2016,36(3):38-42. doi: 10.13394/j.cnki.jgszz.2016.3.0008

    DENG Hua, XING Ying, WANG Mingzhi, et al. Research on the interface relation between TiN0.3/AlN and CBN in PCBN sintering body [J]. Diamond & Abrasives Engineering,2016,36(3):38-42. doi: 10.13394/j.cnki.jgszz.2016.3.0008
    [28] 罗涛, 江文清, 徐敏. TiN-Al体系结合剂配比对聚晶立方氮化硼复合材料性能的影响 [J]. 机械工程材料,2021,45(11):34-37. doi: 10.11973/jxgccl202111007

    LUO Tao, JIANG Wenqing, XU Min. Effect of TiN-Al system binder ratio on properties of polycrystalline cubic boron nitride composite [J]. Materials for Mechanical Engineering,2021,45(11):34-37. doi: 10.11973/jxgccl202111007
    [29] 叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 北京: 冶金工业出版社, 2002.

    YE Dalun, HU Jianhua. Practical handbook of inorganic thermodynamic data [M]. Beijing: Metallurgical Industry Press, 2002. (in Chinese)
    [30] 耶红刚, 陈光德, 竹有章, 等. 六方AlN本征缺陷的第一性原理研究 [J]. 物理学报,2007,9:5376-5380. doi: 10.3321/j.issn:1000-3290.2007.09.065

    YE Honggang, CHEN Guangde, ZHU Youzhang, et al. First-principles study of intrinsic defects in hexagonal aluminum nitride [J]. Journal of Physics,2007,9:5376-5380. doi: 10.3321/j.issn:1000-3290.2007.09.065
    [31] 潘应君, 邓敏, 陈淑花, 等. 多弧离子镀制备TiN/AlN 纳米多层膜及其超硬效应 [J]. 武汉科技大学学报:自然科学版,2008,31(3):312-315. doi: 10.3969/j.issn.1674-3644.2008.03.022

    PAN Yingjun, DENG Min, CHEN Shuhua, et al. Preparation and ultra micro-hardness of TiN/AlN nano-multilayer deposited by multi-arc ion plating [J]. Journal of Wuhan University of Science and Technology (Natural Science Edition),2008,31(3):312-315. doi: 10.3969/j.issn.1674-3644.2008.03.022
    [32] 杨群, 王玉春, 李晓云, 等. 原位法制备AlN-TiN复相陶瓷性能的研究 [J]. 真空电子技术,2016(5):26-29. doi: 10.3969/j.issn.1002-8935.2016.05.007

    YANG Qun, WANG Yuchun, LI Xiaoyun, et al. Research on AlN-TiN composite prepared by in-situ method [J]. Vacuum Electronics,2016(5):26-29. doi: 10.3969/j.issn.1002-8935.2016.05.007
    [33] SETOYAMA M, A. NAKAYAMA, M. TANAKA Formation of cubic-AlN in TiN/AlN superlattice [J]. Surface and Coatings Technology,1996,86-87(1-3):225-230. doi: 10.1016/S0257-8972(96)03033-2
    [34] LEE B T, PEZZOTTI G, HIRAGA K. Microstructure and fracture behavior of SiC-platelet-reinforced Si3N4 matrix composites [J]. Materials Science and Engineering A,1994,177(1-2):151-160. doi: 10.1016/0921-5093(94)90487-1
    [35] PEZZOTTI G, LEE B T, HIRAGA K, et al. Microscopy investigation on fracture mechanisms in hot-isostatically pressed Si3N4/SiC-platelet composites [J]. Journal of Materials Science,1994,29(7):1786-1794. doi: 10.1007/BF00351297
    [36] 黄孝瑛. 电子衍射分析方法 [M]. 北京: 金属材料研究编辑部, 1976.

    HUANG Xiaoying. Electron diffraction analysis method [M]. Beijing: Editorial Office of Metal Materials Research, 1976.
    [37] 进藤大辅, 平贺贤二. 材料评价的高分辨电子显微方法 [M]. 刘安生, 译. 北京: 冶金工业出版社, 1998.

    DAISUKE Shindo, HIRAGA Hyunji. High resolution electron microscopy for material evaluation [M]. Translated by Liu Ansheng. Beijing: Metallurgical Industry Press, 1998.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  166
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 修回日期:  2023-02-04
  • 录用日期:  2023-02-09
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2023-10-20

目录

    /

    返回文章
    返回