Cold compaction and crushing of diamond powders during the sintering of polycrystalline diamond
-
摘要: 为提升聚晶金刚石的致密度,研究在初装、冷等静压后以及六面顶压机内等不同压力条件下,不同金刚石粉体粒径和配比在加压前后的粉体密度、粒径分布及重排微观结构变化,发现金刚石粉体的变化规律。合成过程包括初装料的无序排列到220 MPa等静压后的细颗粒填充孔隙与重排,再到超高压力下大颗粒被挤压破碎,孔隙被逐步填充。由于细颗粒的缓冲效应,大颗粒G20~30在双粒径配方G2~4和G20~30中比在单一粒径G20~30配方中破碎更少,更有利于提升金刚石粉体堆积密度。
-
关键词:
- 聚晶金刚石(PCD) /
- 粉体密度 /
- 粒径分布 /
- 冷压 /
- 破碎
Abstract: To improve the density of polycrystalline diamond, a study was conducted to investigate the changes in diamond powder under different pressure conditions, including initial loading, cold isostatic pressing, and six-sided die pressing. The study focused on the particle size distribution, powder density, and microstructural rearrangement before and after applying pressure to different diamond powder sizes and ratios. The process involved the initial random arrangement of particles, followed by the filling of fine particles into voids and rearrangement at 220 MPa during cold isostatic pressing. Subsequently, under ultra-high pressure, large particles (G20~30) were crushed and gradually filled the voids. The buffering effect of fine particles resulted in fewer fractures in the dual particle size formula (G2~4 and G20~30) compared to the single particle size formula (G20~30), which facilitated higher stacking density of the diamond powder. These findings provide valuable data support for optimizing the particle size and ratio design of diamond powders for the high-temperature high-pressure (HPHT) synthesis of high-performance polycrystalline diamond composite.-
Key words:
- polycrystalline diamond (PCD) /
- powder density /
- particle size distribution /
- cold pressing /
- crushing
-
表 1 主峰中位径D50的体积分数及变化
Table 1. Volume percentage variation of the main peak’s D50
样品 体积分数φ/% 初始 系统油压20 MPa Δ 系统油压30 MPa Δ 系统油压40 MPa Δ A 20.0 18.7 6.5 17.0 15 16.9 15.5 B 24.7 12.1 51 10.7 56.7 10.2 58.7 C 17.1 15.8 7.6 15.4 9.9 15.0 12.3 D 16.8 15.7 6.5 13.3 20.8 13.2 21.4 -
[1] YANG X, DENG F. Synthesis and characterisation of ϕ62 mm polycrystalline diamond compact [J]. Diamond & Related Materials,2019,100:107594. [2] MINORU A, SHINOBU Y, FUMIHIRO U, et al. Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties [J]. Diamond & Related Materials,1996,5:2-7. [3] JOHAN E W, NATALIA D, JAN H, et al. Thermally stable polycrystalline diamond sintered with calcium carbonate [J]. Diamond & Related Materials,2007,16(11):1929-1935. [4] 邹芹, 向刚强, 王瑶, 等. 聚晶金刚石的研究进展与展望 [J]. 金刚石与磨料磨具工程,2021,41(3):23-32.ZOU Qin, XIANG Gangqiang, WANG Yao, et al. Research progress and prospect of polycrystalline diamond [J]. Diamond & Abrasives Engineering,2021,41(3):23-32. [5] 白清顺, 姚英学, ZHANG Grace, 等. 聚晶金刚石(PCD)刀具发展综述 [J]. 工具技术,2002(3):7-10.BAI Qingshun, YAO Yingxue, ZHANG Grace, et al. Summary of development of polycrystalline diamond (PCD) cutting tools [J]. Tool Engineering,2002(3):7-10. [6] 张勤俭, 曹凤国, 王先逵. 聚晶金刚石的应用现状和发展趋势 [J]. 金刚石与磨料磨具工程,2006(1):71-74.ZHANG Qinjian, CAO Fengguo, WANG Xiankui. Application status and development trends of polycrystalline diamond [J]. Diamond & Abrasives Engineering,2006(1):71-74. [7] 方啸虎, 崔祥仁, 谢德龙. 近年来钻探用超硬材料的发展与展望 [J]. 探矿工程, 2021, 48(S1): 18-24.FANG Xiaohu, CUI Xiangren, XIE Delong. Development and prospect of the super hard materials applied to the drilling industry in recent years[J].Exploration Engineering (Drilling &Tunneling), 2021, 48(S1): 18-24. [8] 贾洪声, 李彦涛, 王琰弟, 等. 金刚石初始粒径对金刚石聚晶层形貌及表面残余应力的影响 [J]. 超硬材料工程,2010,22(4):21-23.JIA Hongsheng, LI Yantao, WANG Yandi, et al. Effect of original size of diamond on morphology and surface residual stress in polucrystalline diamond (PCD) [J]. Superhard Material Engineering,2010,22(4):21-23. [9] 邓福铭, 陆绍悌, 王强, 等. 不同粒度金刚石微粉对PCD微结构与性能的影响 [J]. 超硬材料工程,2012,24(6):15-20. doi: 10.3969/j.issn.1673-1433.2012.06.004DENG Fuming, LU Zhaoti, WANG Qiang, et al. Effects of particle size of diamond powder in the microstructure and properties of PCD [J]. Superhard Material Engineering,2012,24(6):15-20. doi: 10.3969/j.issn.1673-1433.2012.06.004 [10] LAMMER A. Mechanical properties of polycrystalline diamonds [J]. Materials Science and Technology,1988,4(11):949-955. doi: 10.1179/mst.1988.4.11.949 [11] MIESS D, RAI G. Frature toughness and thermal resistance of polycrystalline diamond compacts [J]. Materials Science and Engineering A, 1996(209): 270-276 [12] MCNAMARA D, ALVEEN P, CAROLAN D, et al. Fracture toughness evaluation of polycrystalline diamond as a function of microstructure [J]. Engineering Fracture Mechanics,2015,143:1-16. doi: 10.1016/j.engfracmech.2015.06.008 [13] THOMAS A S. The influence of microstructure on the mechanical properties of polycrystalline diamond: A literature review [J]. Advances in Applied Ceramics,2018,117(3):161-176. doi: 10.1080/17436753.2017.1389462 [14] 王海阔, 任瑛, 贺端威, 等. 六面顶压机立方压腔内压强的定量及受力分析 [J]. 物理学报,2017,66(9):68-75.WANG Haikuo, REN Ying, HE Duanwei, et al. Force analysis and pressure quantitative measurement for the high pressure cubic cell [J]. Acta Physics Sinica,2017,66(9):68-75. -