CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MPCVD多晶金刚石片的研磨均匀性分析

徐钰淳 朱建辉 王宁昌 师超钰 赵延军 邵俊永 徐帅

徐钰淳, 朱建辉, 王宁昌, 师超钰, 赵延军, 邵俊永, 徐帅. MPCVD多晶金刚石片的研磨均匀性分析[J]. 金刚石与磨料磨具工程, 2022, 42(6): 705-712. doi: 10.13394/j.cnki.jgszz.2022.0162
引用本文: 徐钰淳, 朱建辉, 王宁昌, 师超钰, 赵延军, 邵俊永, 徐帅. MPCVD多晶金刚石片的研磨均匀性分析[J]. 金刚石与磨料磨具工程, 2022, 42(6): 705-712. doi: 10.13394/j.cnki.jgszz.2022.0162
XU Yuchun, ZHU Jianhui, WANG Ningchang, SHI Chaoyu, ZHAO Yanjun, SHAO Junyong, XU Shuai. Analysis on the lapping uniformity of MPCVD polycrystalline diamond wafer[J]. Diamond & Abrasives Engineering, 2022, 42(6): 705-712. doi: 10.13394/j.cnki.jgszz.2022.0162
Citation: XU Yuchun, ZHU Jianhui, WANG Ningchang, SHI Chaoyu, ZHAO Yanjun, SHAO Junyong, XU Shuai. Analysis on the lapping uniformity of MPCVD polycrystalline diamond wafer[J]. Diamond & Abrasives Engineering, 2022, 42(6): 705-712. doi: 10.13394/j.cnki.jgszz.2022.0162

MPCVD多晶金刚石片的研磨均匀性分析

doi: 10.13394/j.cnki.jgszz.2022.0162
基金项目: 河南省重大科技专项(221100230300);河南省科技攻关项目(222102230043);郑州市重大科技创新专项(2021KJZX0062)。
详细信息
    作者简介:

    徐钰淳,男,1995年生,硕士、工程师。主要研究方向:超硬材料精密磨抛技术。E-mail: yuchun-xu@foxmail.com

  • 中图分类号: TG74;TQ164

Analysis on the lapping uniformity of MPCVD polycrystalline diamond wafer

  • 摘要: 在游离磨料研磨过程中,研磨的驱动方式及工艺参数等直接影响加工后工件的平面度和表面粗糙度。为了探究基于旋摆式驱动的游离磨料研磨工艺参数对MPCVD多晶金刚石片平整化的影响,建立旋摆式驱动平面研磨过程中的单磨粒运动学模型,根据实际研磨过程采用多磨粒随机分布模型进行计算机仿真计算,引入多磨粒轨迹的均匀性离散系数对磨粒轨迹均匀性进行分析。结果表明:当转速比取值等于0.5时,磨粒轨迹离散系数最大;当转速比小于等于0.5时,离散系数与转速比为正相关;研磨盘摆动弧线的弦长大于金刚石片直径时,磨粒相对于整个金刚石片表面的运动轨迹分布较为均匀;计算机仿真计算得到了研磨最优参数,并通过2英寸MPCVD多晶金刚石片研磨试验验证了仿真结果的有效性。研磨后金刚石片表面PV值为2.4 μm,表面粗糙度Ra达到139 nm,材料去除率dMRR为10.1 μm/h。

     

  • 图  1  旋摆式驱动平面研磨几何模型

    Figure  1.  Geometric model of rotary swing drive plane lapping

    图  2  研磨盘与工件运动关系

    Figure  2.  Kinematic relation between lapping plate and workpiece

    图  3  研磨盘随机磨粒分布示意图

    Figure  3.  Random abrasive distribution on the lapping plate

    图  4  工件网格划分示意图

    Figure  4.  Schematic diagram of workpiece meshing

    图  5  不同转速比下虚拟工件磨粒轨迹

    Figure  5.  Virtual workpiece abrasive trajectory under different speed ratio

    图  6  转速比对轨迹离散系数的影响规律

    Figure  6.  Influence of rotational speed ratio on trajectory dispersion coefficient

    图  7  不同摆动弧弦长下的磨粒轨迹

    Figure  7.  Abrasive trajectory under different chord length of oscillating arc

    图  8  摆动弧弦长对离散系数变化规律的影响

    Figure  8.  Influence of the chord length of oscillating arc on the variation of dispersion coefficient

    图  9  旋摆式驱动研磨设备

    Figure  9.  Rotary swing drive lapping equipment

    图  10  研磨机摆动驱动模块

    Figure  10.  Swing drive module of lapping machine

    图  11  试验值与仿真计算结果对比

    Figure  11.  Simulation results are compared with the experimental values

    图  12  金刚石片研磨表面粗糙度采样位置

    Figure  12.  Sampling position of diamond abrasive surface roughness

    图  13  金刚石片研磨表面粗糙度结果

    Figure  13.  Results of lapping surface roughness of diamond wafer

    图  14  金刚石片研磨表面面形精度PV值

    Figure  14.  PV value of surface precision of diamond lapping surface

    图  15  金刚石研磨材料去除率

    Figure  15.  Diamond abrasive material removal rate

    表  1  计算机仿真参数

    Table  1.   Parameters of computer simulation

    参数 类型或数值
    微单元类型 正方形
    微单元边长 l /mm 1
    虚拟工件直径 D/ mm 51
    研磨盘直径 R/ mm 500
    随机磨粒数 n1 100
    研磨盘转速 ω1/(r·min−1 63
    转速比 I 0~1
    摆动周期 T/ s 1/ω2
    摆动弧弦长A/ mm 60
    仿真时间t /s 80
    摆动中心偏心距 e/ mm 160
    下载: 导出CSV
  • [1] AN K, CHEN L, YAN X, et al. Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films [J]. Ceramics International,2018,44(15):17845-17851. doi: 10.1016/j.ceramint.2018.06.253
    [2] JIA X, WEI J, HUANG Y, et al. Fabrication of low stress GaN-on-diamond structure via dual-sided diamond film deposition [J]. Journal of Materials Science,2021,56(11):6903-6911. doi: 10.1007/s10853-020-05743-8
    [3] COUTO M, ENEKEVORT W, WICHMAN B, et al. Scanning tunneling microscopy of polished diamond surfaces [J]. Applied Surface Science,1992,62(4):263-268. doi: 10.1016/0169-4332(92)90367-7
    [4] 文星凯, 魏俊俊, 刘金龙, 等. 大面积自支撑金刚石膜的机械研磨研究 [J]. 金刚石与磨料磨具工程,2013,33(5):22-26. doi: 10.13394/j.cnki.jgszz.2013.05.004

    WEN Xingkai, WEI Junjun, LIU Jinlong, et al. Study on mechanical grinding for large area free-standing diamond film [J]. Diamond & Abrasives Engineering,2013,33(5):22-26. doi: 10.13394/j.cnki.jgszz.2013.05.004
    [5] LIU H, ZONG W J, XIAO C. Behaviors of carbon atoms induced by friction in mechanical polishing of diamond [J]. Computational Materials Science,2020,186:110069.
    [6] 鲁聪达, 王笑, 文东辉, 等. 超精密研磨技术及其发展的研究(上) [J]. 现代制造工程, 2008(3): 126-128.

    LU Congda, WANG Xiao, WEN Donghui, et al. Research on the development of ultra-precision lapping and detection technology [J]. Modern Manufacturing Engineering, 2008(3): 126-128.
    [7] 袁慧, 陈春林, 王成勇. 机械法抛光加工金刚石膜研究 [J]. 超硬材料工程,2007(1):5-9. doi: 10.3969/j.issn.1673-1433.2007.01.002

    YUAN Hui, CHEN Chunlin, WANG Chengyong. Mechanical polishing of CVD diamond films [J]. Superhard Material Engineering,2007(1):5-9. doi: 10.3969/j.issn.1673-1433.2007.01.002
    [8] ZHOU L, HUANG S T, WANG X L, et al. High-speed mechanical lapping of CVD diamond films using diamond wheel [J]. International Journal of Refractory Metals and Hard Materials,2012,35:185-190. doi: 10.1016/j.ijrmhm.2012.05.007
    [9] RYL J, ZIELINSKI A, BURCZYK L, et al. Chemical-assisted mechanical lapping of thin boron-doped diamond films: A fast route toward high electrochemical performance for sensing devices [J]. Electrochimica Acta,2017,242:268-279. doi: 10.1016/j.electacta.2017.05.027
    [10] 徐锋, 左敦稳, 王珉, 等. CVD金刚石厚膜的机械抛光及其残余应力的分析 [J]. 人工晶体学报,2004,33(3):436-440. doi: 10.3969/j.issn.1000-985X.2004.03.038

    XU Feng, ZUO Dunwen, WANG Min, et al. Study on mechanical polishing for cvd diamond thick film and its residual stresses [J]. Journal of Synthetic Crystals,2004,33(3):436-440. doi: 10.3969/j.issn.1000-985X.2004.03.038
    [11] 肖燏婷, 吴晓峰, 蔡姚杰, 等. 无理偏摆式平面研磨加工均匀性的数值模拟 [J]. 机械工程学报,2021,57(13):232-241. doi: 10.3901/JME.2021.13.232

    XIAO Yuting, WU Xiaofeng, CAI Yaojie, et al. Numerical simulation on uniformity of plane lapping with irrational swinging method [J]. Journal of Mechanical Engineering,2021,57(13):232-241. doi: 10.3901/JME.2021.13.232
    [12] 张志鹏, 陈燕, 潘明诗, 等. 基于Hilbert曲线磁粒研磨轨迹均匀性实验研究 [J]. 表面技术,2022,51(8):408-417. doi: 10.16490/j.cnki.issn.1001-3660.2022.08.037

    ZHANG Zhipeng, CHEN Yan, PAN Mingshi, et al. Experimental study on magnetic particle grinding uniformity based on hilbert curve [J]. Surface Technology,2022,51(8):408-417. doi: 10.16490/j.cnki.issn.1001-3660.2022.08.037
    [13] 严振, 方从富, 刘冲. 偏摆式平面研磨抛光轨迹的理论研究 [J]. 金刚石与磨料磨具工程,2018,38(4):77-82. doi: 10.13394/j.cnki.jgszz.2018.4.0015

    YAN Zhen, FANG Congfu, LIU Chong. Theoretical study on trajectory of swinging plane lapping and polishing [J]. Diamond & Abrasives Engineering,2018,38(4):77-82. doi: 10.13394/j.cnki.jgszz.2018.4.0015
    [14] BINDU K H, RAGHAVA M, DEY N, et al. Coefficient of variation and machine learning applications [M]. Boca Raton: CRC Press, 2019.
    [15] 田业冰, 金洙吉, 康仁科, 等. 硅片自旋转磨削的运动几何学分析 [J]. 中国机械工程,2005,16(20):4. doi: 10.3321/j.issn:1004-132X.2005.20.004

    TIAN Yebing, JIN Zhuji, KANG Renke, et al. Analysis of kinematic geometry on wafer rotation grinding processes [J]. China Mechanical Engineering,2005,16(20):4. doi: 10.3321/j.issn:1004-132X.2005.20.004
    [16] 李姚, 郑子轩, 蒲红斌. 金刚石衬底上GaN HEMT沟道温度建模: 各向异性且非均匀热导率的影响 [J]. 人工晶体报,2022,51(2):222-228.

    LI Yao, ZHENG Zixuan, PU Hongbin. Analysis of channel temperature in GaN on diamond HEMT: Effect of anisotropic and inhomogeneous thermal conductivity [J]. Journal of Synthetic Crystals,2022,51(2):222-228.
    [17] SCHOLZ T, SCHNEIDER G A, MUNOZ-SALDANA J, et al. Fracture toughness from submicron derived indentation cracks [J]. Applied Physics Letters,2004,84(16):3055-3057. doi: 10.1063/1.1711164
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  238
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2022-11-16
  • 录用日期:  2022-11-16
  • 刊出日期:  2023-01-12

目录

    /

    返回文章
    返回