[1] |
LI Z, DING W F, LIU C J, et al. Prediction of grinding temperature of PTMCs based on the varied coefficients of friction in conventional-speed and high-speed surface grinding [J]. The International Journal of Advanced Manufacturing Technology,2017,90:2335-2344. doi: 10.1007/s00170-016-9578-0
|
[2] |
李征, 刘莹, 丁文峰. 不同CBN砂轮高速加工PTMCs的磨削性能对比 [J]. 金刚石与磨料磨具工程,2020,40(5):5-10.LI Zheng, LIU Ying, DING Wenfeng. Comparing performance of CBN grinding wheels in high-speed grinding [J]. Diamond & Abrasives Engineering,2020,40(5):5-10.
|
[3] |
刘明耀, 李克华, 赵兴昊. 中国CBN磨具的研发历程与技术发展趋势 [J]. 金刚石与磨料磨具工程,2017,37(1):1-6. doi: 10.13394/j.cnki.jgszz.2017.1.0001LIU Mingyao, LI Kehua, ZHAO Xinghao. Course and technology development trend of CBN grinding tools in China [J]. Diamond & Abrasives Engineering,2017,37(1):1-6. doi: 10.13394/j.cnki.jgszz.2017.1.0001
|
[4] |
丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望 [J]. 航空学报,2019,40(6):1-36. doi: 10.7527/S1000-6893.2019.22763DING Wenfeng, XI Xinxin, ZHAN Jinghua, et al. Research status and future development of grinding technology of titanium materials for aero-engines [J]. Acta Aeronautica et Astronautica Sinica,2019,40(6):1-36. doi: 10.7527/S1000-6893.2019.22763
|
[5] |
师超钰, 朱建辉, 孙鹏辉, 等. 低浓度陶瓷CBN砂轮有效磨粒统计及磨削性能研究 [J]. 现代制造工程,2018,12:119-123. doi: 10.16731/j.cnki.1671-3133.2018.12.020SHI Chaoyu, ZHU Jianhui, SUN Penghui, et al. Research on effective grains statistics and grinding performance of vitrified CBN grinding wheel in low concentration [J]. Modern Manufacturing Engineering,2018,12:119-123. doi: 10.16731/j.cnki.1671-3133.2018.12.020
|
[6] |
BHOWMIK S, NAIK R. Selection of abrasive materials for manufacturing grinding wheels [J]. Materials Today,2018,5(1):2860-2864.
|
[7] |
ZHAO Y, YU T, CHEN L, et al. Microstructure and wear resistance behavior of Ti-C-B4C-reinforced composite coating [J]. Ceramics International,2020,46(16A):25136-25148. doi: 10.1016/j.ceramint.2020.06.300
|
[8] |
SUN Y, JIN L, GONG Y, et al. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM [J]. Journal of Manufacturing Processes,2022,73:799-814. doi: 10.1016/j.jmapro.2021.11.049
|
[9] |
吕智, 谢志刚, 林峰, 等. 超硬材料在精密加工中的应用现状与展望 [J]. 超硬材料工程,2018,30(6):43-46. doi: 10.3969/j.issn.1673-1433.2018.06.015LU Zhi, XIE Zhigang, LIN Feng, et al. Application and development of superhard materials on precision machining [J]. Superhard Material Engineering,2018,30(6):43-46. doi: 10.3969/j.issn.1673-1433.2018.06.015
|
[10] |
孙金阶, 王伟. 中外陶瓷磨具技术比较分析 [J]. 世界制造技术与装备市场,2009,3:92-96. doi: 10.3969/j.issn.1015-4809.2009.03.028SUN Jinjie, WANG Wei. Comparative & analysis on domestic and foreign ceramic abrasive technology [J]. The Manufacturing Technology and Equipment Market,2009,3:92-96. doi: 10.3969/j.issn.1015-4809.2009.03.028
|
[11] |
孙会冰, 赵玉成, 王明智, 等. 立方氮化硼砂轮的研究与发展 [J]. 金刚石与磨料磨具工程,2017,37(5):79-85. doi: 10.13394/j.cnki.jgszz.2017.5.0016SUN Huibing, ZHAO Yucheng, WANG Mingzhi, et al. Research and development of cubic boron nitride grinding wheel [J]. Diamond & Abrasives Engineering,2017,37(5):79-85. doi: 10.13394/j.cnki.jgszz.2017.5.0016
|
[12] |
耿红生, 张国权, 陈远方. 陶瓷砂轮自动加工线的设计与研究 [J]. 成组技术与生产现代化,2021,38(4):50-54. doi: 10.3969/j.issn.1006-3269.2021.04.008GENG Hongsheng, ZHANG Guoquan, CHEN Yuanfang. Design and research on automatic machining line of ceramic grinding wheel [J]. Group Technology & Production Modernization,2021,38(4):50-54. doi: 10.3969/j.issn.1006-3269.2021.04.008
|
[13] |
HARRIS T K, BROOKES E J, TAYLOR C J. The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials [J]. International Journal of Refractory Metals Hard Materials,2004,22(2/3):105-110. doi: 10.1016/j.ijrmhm.2004.01.004
|
[14] |
王光祖. 在不同触媒-hBN体系中cBN的合成 [J]. 超硬材料工程,2005(6):44-47.WANG Guangzu. Synthesis of cBN with various catalyst and hBN system [J]. Superhard Material Engineering,2005(6):44-47.
|
[15] |
WENTORF R H. Cubic form of boron nitride [J]. The Journal of Chemical Physics,1957,26(4):952-956.
|
[16] |
FUKUNAGA O, NAKANO S, TANIGUCHI T. Nucleation and growth of cubic boron nitride using a Ca-B-N solvent [J]. Diamond and Related Materials,2004,13(9):1709-1713. doi: 10.1016/j.diamond.2004.02.013
|
[17] |
YANG D, JI X, LIU H, et al. The influence of Li-based catalysts/additives on CBN crystal morphologies synthesized under HPHT [J]. Diamond and Related Materials,2011,20(2):174-177. doi: 10.1016/j.diamond.2010.11.023
|
[18] |
GUO W, SHI Y, YANG P, et al. Characterization of boron nitride phase transformations in the Li-B-N system under high pressure and high temperature [J]. Journal of Alloys and Compounds,2015,644:888-892. doi: 10.1016/j.jallcom.2015.05.094
|
[19] |
LV M, XU B, CAI L, et al. Analysis of transition mechanism of cubic boron nitride single crystals under high pressure-high temperature with valence electron structure calculation [J]. Chinese Physics Letters,2019,36(1):013101. doi: 10.1088/0256-307X/36/1/013101
|
[20] |
LV M, XU B, GUO X, et al. Electron energy loss spectroscopy analysis for cubic boron nitride single crystals transition mechanism in Li3N-BN system [J]. Materials Letters,2019,242:75-78. doi: 10.1016/j.matlet.2019.01.058
|
[21] |
温振兴, 许斌, 蔡立超, 等. Li3N触媒粒度对立方氮化硼单晶合成效果的影响 [J]. 人工晶体学报,2014,43(2):285-288. doi: 10.3969/j.issn.1000-985X.2014.02.005WEN Zhenxing, XU Bin, CAI Lichao, et al. Influence of particle size of Li3N catalyst on synthetic effect of cubic boron nitride single crystal [J]. Journal of Synthetic Crystals,2014,43(2):285-288. doi: 10.3969/j.issn.1000-985X.2014.02.005
|
[22] |
王功振, 许斌, 时永鹏, 等. CBN单晶合成效果与合成后Li基触媒组织结构的相关性研究 [J]. 人工晶体学报,2016,45(12):2752-2757. doi: 10.3969/j.issn.1000-985X.2016.12.003WANG Gongzhen, XU Bin, SHI Yongpeng, et al. Study on correlation between synthetic quality of CBN crystals and microstructure of the lithium-based catalyst [J]. Journal of Synthetic Crystals,2016,45(12):2752-2757. doi: 10.3969/j.issn.1000-985X.2016.12.003
|
[23] |
王功振, 贾凤, 时永鹏, 等. 合成后的触媒组织结构对立方氮化硼单晶合成效果的影响 [J]. 超硬材料工程,2017,29(5):12-16. doi: 10.3969/j.issn.1673-1433.2017.05.004WANG Gongzhen, JIA Feng, SHI Yongpeng, et al. Effects of the structure of synthesized lithium-based catalyst on synthetic quality of CBN single crystal [J]. Superhard Material Engineering,2017,29(5):12-16. doi: 10.3969/j.issn.1673-1433.2017.05.004
|
[24] |
CAI L, FAN X, SU H, et al. Process optimization of large-sized cubic boron nitride single crystal synthesis with Li3N as catalyst [J]. Ferroelectrics,2020,566(1):145-152. doi: 10.1080/00150193.2020.1762438
|
[25] |
于丽娟. 关于合成立方氮化硼触媒材料的研究 [J]. 西安建筑科技大学学报(自然科学版),1998,30(1):86-88.YU Lijuan. Research on synthesizing cubic boron-nitride catalytic material [J]. Journal of Xi′an University of Architecture & Technology (Natural Science Edition),1998,30(1):86-88.
|
[26] |
李启泉, 孙湘东, 刘书锋, 等. 镁基触媒合成立方氮化硼的研究 [J]. 中原工学院学报,2021,32(3):22-26. doi: 10.3969/j.issn.1671-6906.2021.03.005LI Qiquan, SUN Xiangdong, LIU Shufeng, et al. Study on the synthesis of CBN using magnesium-based catalyst [J]. Journal of Zhongyuan University of Technology,2021,32(3):22-26. doi: 10.3969/j.issn.1671-6906.2021.03.005
|
[27] |
SINGHAL S K, DER GONNA J V, NOVER G, et al. Synthesis of cubic boron nitride at reduced pressures in the presence of Co[(NH3)6]Cl3 and NH4F [J]. Diamond and Related Materials,2005,14(8):1389-1394. doi: 10.1016/j.diamond.2005.02.007
|
[28] |
MA K. Synthesis of cubic boron nitride under relatively lower pressure and lower temperature via chemical reaction [J]. Glass Physics and Chemistry,2020,46(2):181-185.
|
[29] |
刘彩云, 高伟, 殷红. 立方氮化硼的研究进展 [J]. 人工晶体学报,2022,51(5):781-800. doi: 10.3969/j.issn.1000-985X.2022.05.004LIU Caiyun, GAO Wei, YIN Hong. Research progress of cubic boron nitride [J]. Journal of Synthetic Crystals,2022,51(5):781-800. doi: 10.3969/j.issn.1000-985X.2022.05.004
|
[30] |
MISHMA O, YAMAOKA S, FUKUMAGA O. Crystal growth of cubic boron nitride by temperature difference method at~55 kbar and~1 800 ℃ [J]. Journal of Applied Physics,1987,61(8):2822-2825. doi: 10.1063/1.337874
|
[31] |
TANIGUCHI T, YAMAOKA S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure [J]. Journal of Crystal Growth,2001,222(3):549-557. doi: 10.1016/S0022-0248(00)00907-6
|
[32] |
张铁臣, 杜永慧, 苏作鹏. 控制自发成核生长大颗粒立方氮化硼晶体 [J]. 金刚石与磨料磨具工程,2003,136(4):23-25.ZHANG Tiechen, DU Yonghui, SU Zuopeng. Growth of large cubic boron nitride crystal by controlling spontaneous nucleation [J]. Diamond & Abrasives Engineering,2003,136(4):23-25.
|
[33] |
苏海通, 许斌, 蔡立超, 等. 添加籽晶对合成立方氮化硼单晶的影响 [J]. 人工晶体学报,2015,44(10):2679-2684. doi: 10.3969/j.issn.1000-985X.2015.10.009SU Haitong, XU Bin, CAI Lichao, et al. Influence of adding seed crystals on synthesis of cubic boron nitride single crystal [J]. Journal of Synthetic Crystals,2015,44(10):2679-2684. doi: 10.3969/j.issn.1000-985X.2015.10.009
|
[34] |
LI Z C, ZHANG A J, LI Z, et al. Surface treatment of cubic boron nitride grains applied to vitrified bond grinding tools [J]. Materials Science Forum,2011(675/676/677):167-170.
|
[35] |
YANG X, BAI J, JING W, et al. Strengthening of low-temperature sintered vitrified bond CBN grinding wheels by pre-oxidation of CBN abrasives [J]. Ceramics International,2016,42(7):9283-9286. doi: 10.1016/j.ceramint.2016.02.070
|
[36] |
鲍崇高, 宋奕侨, 侯书增, 等. 磨料表面微氧化对CBN磨具磨削性能的影响 [J]. 西安交通大学学报,2015,49(2):124-129.BAO Chonggao, SONG Yiqiao, HOU Shuzeng, et al. Effect of the CBN grit surface oxidation on grinding performance of the vitrified CBN tool [J]. Journal of Xi′an Jiaotong University,2015,49(2):124-129.
|
[37] |
王艳辉, 王明智, 温熙宇, 等. 镀Ti立方氮化硼与玻化 SiO2-Na2O-B2O3结合剂的作用 [J]. 无机材料学报,1995,10(3):351-355.WANG Yanhui, WANG Mingzhi, WEN Xiyu, et al. Reaction between Ti-coated CBN and SiO2-Na2O-B2O3 glass bond [J]. Journal of Inorganic Materials,1995,10(3):351-355.
|
[38] |
王艳辉, 王明智, 臧建兵. Cr镀层对立方氮化硼-玻化陶瓷复合材料界面成分、结构的作用 [J]. 复合材料学报,1996,13(1):50-54.WANG Yanhui, WANG Mingzhi, ZANG Jianbin. The influence of Cr-clading on interface structure and composition of CBN-borosilicate glass composite materials [J]. Acta Materiae Compositae Sinica,1996,13(1):50-54.
|
[39] |
张明, 臧建兵, 王明智, 等. Mo涂层的立方氮化硼(CBN)与玻化陶瓷复合烧结体的研究 [J]. 人工晶体学报,1996,25(1):23-28.ZHANG Ming, ZANG Jianbing, WANG Mingzhi, et al. Study on composite materials sintered by Mo clad CBN and vitrified ceramics [J]. Journal of Synthetic Crystals,1996,25(1):23-28.
|
[40] |
赵玉成, 臧建兵, 王明智, 等. 刚玉涂覆的超硬磨料 [J]. 金刚石与磨料磨具工程,1999(5):6-7.ZHAO Yucheng, ZANG Jianbing, WANG Mingzhi, et al. Superhard abrasive with corundum coating [J]. Diamond & Abrasives Engineering,1999(5):6-7.
|
[41] |
张林森, 桂阳海, 闫莉, 等. 氮化硼微粒化学镀镍-磷合金工艺研究 [J]. 电镀与精饰,2009,31(3):38-40. doi: 10.3969/j.issn.1001-3849.2009.03.011ZHANG Linsen, GUI Yanghai, YAN Li, et al. Study of Ni-P alloy electroless plating on boron nitride particles [J]. Plating and Finishing,2009,31(3):38-40. doi: 10.3969/j.issn.1001-3849.2009.03.011
|
[42] |
李建壮, 刘晓玲, 庞子瑞, 等. 镀钛CBN磨料对超高速陶瓷砂轮强度的影响 [J]. 金刚石与磨料磨具工程,2010,30(4):77-80.LI Jianzhuang, LIU Xiaoling, PANG Zirui, et al. Effect of Ti coating on CBN grains upon the bending strength of ultra high speed vitrified cBN wheel [J]. Diamond & Abrasives Engineering,2010,30(4):77-80.
|
[43] |
梁宝岩, 韩丹辉, 张旺玺, 等. 微波-熔盐热处理在CBN表面形成TiN类石墨烯晶体 [J]. 金刚石与磨料磨具工程,2018,38(1):37-40.LIANG Baoyan, HAN Danhui, ZHANG Wangxi, et al. TiN graphene crystals on the surface of CBN by microwave-salt molten treatment [J]. Diamond & Abrasives Engineering,2018,38(1):37-40.
|
[44] |
陈东风, 曹志强, 杨淼, 等. 强磁场在材料科学中的应用现状及理论分析 [J]. 钢铁研究. 2007, 35(3): 58-62.CHEN Dongfeng, CAO Zhiqiang, YANG Miao, et al. Application situation and theoretical analysis of high magnetic field in material science [J]. Research on Iron and Steel, 2007, 35(3): 58-62.
|
[45] |
YU T, MA Z, WANG X, et al. Effects of Ni addition on properties of vitrified bond CBN composites in strong magnetic field [J]. Ceramics International,2018,44(8):9312-9317. doi: 10.1016/j.ceramint.2018.02.143
|
[46] |
WANG X, SUN X, MA Z, et al. Effects of sintering in a high magnetic field on properties of vitrified bond and vitrified CBN composites [J]. Ceramics International,2018,44(18):22301-22307. doi: 10.1016/j.ceramint.2018.08.355
|
[47] |
石莹, 王学智, 于天彪, 等. 强磁场陶瓷结合剂CBN砂轮制备及磨削性能 [J]. 东北大学学报,2020,41(12):1721-1726.SHI Ying, WANG Xuezhi, YU Tianbiao, et al. Preparation and grinding performance of high magnetic field vitrified bond CBN grinding wheel [J]. Journal of Northeastern University (Natural Science),2020,41(12):1721-1726.
|
[48] |
WANG X, MING C, ZHENG Y, et al. Study on grinding nickel-based superalloy GH4169 with ceramic bond CBN wheel controlling abrasive orientation by magnetic field [J]. International Journal of Advanced Manufacturing Technology,2022,121:6635-6645. doi: 10.1007/s00170-022-09764-2
|
[49] |
HERMAN D, KRZOS J. Influence of vitrified bond structure on radial wear of CBN grinding wheels [J]. Journal of Materials Processing Technology,2009,209(14):5377-5386. doi: 10.1016/j.jmatprotec.2009.03.013
|
[50] |
张习敏, 王明智, 王艳辉. 不同造孔剂对陶瓷结合剂性能的影响 [J]. 金刚石与磨料磨具工程,2002,131(5):19-22. doi: 10.3969/j.issn.1006-852X.2002.05.005ZHANG Ximin, WANG Mingzhi, WANG Yanhui. Effects of different pore forming agents on the properties of ceramic binder [J]. Diamond & Abrasives Engineering,2002,131(5):19-22. doi: 10.3969/j.issn.1006-852X.2002.05.005
|
[51] |
刘一波, 刘伟, 杨德涛, 等. 不同无机铵盐对陶瓷结合剂CBN砂轮造孔的应用研究 [J]. 金刚石与磨料磨具工程,2009,174(6):15-18. doi: 10.3969/j.issn.1006-852X.2009.06.004LIU Yibo, LIU Wei, YANG Detao, et al. Pore-forming effect of different inorganic ammonium salts applied on vitrified bond CBN wheels [J]. Diamond & Abrasives Engineering,2009,174(6):15-18. doi: 10.3969/j.issn.1006-852X.2009.06.004
|
[52] |
LV X, LI Z, ZHU Y, et al. Effect of PMMA pore former on microstructure and mechanical properties of vitrified bond CBN grinding wheels [J]. Ceramics International,2013,39(2):1893-1899. doi: 10.1016/j.ceramint.2012.08.038
|
[53] |
DING W F, XU J H, CHEN Z Z, et al. Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents [J]. The International Journal of Advanced Manufacturing Technology,2013,67:1309-1315. doi: 10.1007/s00170-012-4567-4
|
[54] |
WANG C C, ZHANG F L, PAN J S, et al. An experimental study on preparation of vitrified bond diamond grinding wheel with hollow spherical corundum granules as pore former [J]. The International Journal of Advanced Manufacturing Technology,2017,93:595-603. doi: 10.1007/s00170-017-0475-y
|
[55] |
王超超, 张凤林, 李伟雄, 等. 空心玻璃微珠对陶瓷结合剂金刚石砂轮微观结构和力学性能的影响 [J]. 工具技术,2017,51(10):36-39. doi: 10.3969/j.issn.1000-7008.2017.10.009WANG Chaochao, ZHANG Fenglin, LI Weixiong, et al. Effect of glass bubble as pore former on micro-structure and mechanical properties of vitrified bond diamond grinding wheels [J]. Tool Engineering,2017,51(10):36-39. doi: 10.3969/j.issn.1000-7008.2017.10.009
|
[56] |
轩闯, 王超超, 白福厚, 等. 基于空心氧化铝微球造孔的陶瓷结合剂金刚石砂轮 [J]. 金刚石与磨料磨具工程, 2022, 42(4): 442-448.XUAN Chuang, WANG Chaochao, BAI Fuhou, et al. Vitrified bond diamond grinding wheel based on hollow corundum microspheres [J]. Diamond & Abrasives Engineering, 2022, 42(4): 442-448.
|
[57] |
陈卫东, 涂俊群. 不同的造孔剂对陶瓷结合剂CBN砂轮性能的影响 [J]. 超硬材料工程,2014,26(3):1-5.CHEN Weidong, TU Junqun. Influence of different type of pore former on the mechanical property of vitrified bond CBN Grinding Wheel [J]. Superhard Material Engineering,2014,26(3):1-5.
|
[58] |
侯永改, 路继红, 张明岩, 等. 成孔剂对陶瓷结合剂CBN磨具结构与性能影响的研究 [J]. 金刚石与磨料磨具工程,2014,34(1):48-52. doi: 10.13394/j.cnki.jgszz.2014.1.0011HOU Yonggai, LU Jihong, ZHANG Mingyan, et al. Study on the influence of pore former to the structure and performance of vitrified bond CBN abrasive tools [J]. Diamond & Abrasives Engineering,2014,34(1):48-52. doi: 10.13394/j.cnki.jgszz.2014.1.0011
|
[59] |
樊雪琴, 侯永改, 路继红, 等. V2O5对低温陶瓷结合剂性能与结构的影响 [J]. 中国陶瓷,2014,50(7):61-63.FAN Xueqin, HOU Yonggai, LU Jihong, et al. Effect of V2O5 on properties and structure of low temperature vitrified bond [J]. China Ceramics,2014,50(7):61-63.
|
[60] |
REN Q, LIU C X, ZHANG Q, et al. Effects of B2O3 substitution for Al2O3 on the crystallization and properties of translucent mica glass-ceramics [J]. Journal of the European Ceramic Society,2021,41(16):334-341. doi: 10.1016/j.jeurceramsoc.2021.09.048
|
[61] |
王照, 徐三魁, 黄威, 等. B2O3含量对 SiO2-B2O3-Al2O3-Na2O系陶瓷结合剂结构与性能的影响 [J]. 金刚石与磨料磨具工程 [J]. 2022, 42(5): 552-558.WANG Zhao, XU Sankui, HUANG Wei, et al. Effect of B2O3 content on the structure and properties of SiO2-B2O3-Al2O3-Na2O system ceramic binder [J]. Diamond & Abrasives Engineering, 2022, 42(5): 552-558.
|
[62] |
WANG P F, LI Z H, LI J, et al. Effect of ZnO on the interfacial bonding between Na2O-B2O3-SiO2 vitrified bond and diamond [J]. Solid State Sciences,2009,11(8):1427-1432. doi: 10.1016/j.solidstatesciences.2009.04.026
|
[63] |
LUTPI H A, MOHAMAD H, ABDULLAH T K, et al. Effect of ZnO on the structural, physio-mechanical properties and thermal shock resistance of Li2O-Al2O3-SiO2 glass-ceramics [J]. Ceramics International,2022,48(6):7677-7686. doi: 10.1016/j.ceramint.2021.11.315
|
[64] |
赵婧. PbO对陶瓷结合剂性能的影响研究 [J]. 陶瓷,2018,9:23-28. doi: 10.3969/j.issn.1002-2872.2018.06.004ZHAO Jing. Study on the effect of PbO on the properties of ceramic binder [J]. Ceramics,2018,9:23-28. doi: 10.3969/j.issn.1002-2872.2018.06.004
|
[65] |
陈建立, 刘一波, 王雄飞, 等. Al2O3/SiO2比对陶瓷结合剂性能的影响研究 [J]. 超硬材料工程,2022,34(2):25-28. doi: 10.3969/j.issn.1673-1433.2022.02.005CHEN Jianli, LIU Yibo, WANG Xiongfei, et al. Study on the influence of Al2O3/SiO2 ratio on the ceramic bond property [J]. Superhard Material Engineering,2022,34(2):25-28. doi: 10.3969/j.issn.1673-1433.2022.02.005
|
[66] |
WU H F, LIN C C, SHEN P Y. Structure and dissolution of CaO-ZrO2-TiO2-Al2O3-B2O3-SiO2 glass (Ⅱ) [J]. Journal of Non-Crystalline Solids,1997,209(1-2):76-78. doi: 10.1016/S0022-3093(96)00553-4
|
[67] |
LI B, DUAN D, LONG Q. Influences of ZrO2 on microstructures and properties of Li2O–Al2O3–SiO2 glass–ceramics for LTCC applications [J]. Journal of Materials Science: Materials in Electronics,2016,27:134-139.
|
[68] |
侯永改, 张明岩, 田久根, 等. ZrO2对CBN用低温陶瓷结合剂及磨具性能的影响 [J]. 硅酸盐通报,2013,32(8):1592-1596.HOU Yonggai, ZHANG Mingyan, TIAN Jiugen, et al. Effect of ZrO2 on properties of low temperature vitrified bond and abrasive tools with CBN [J]. Bulletin of the Chinese Ceramic Society,2013,32(8):1592-1596.
|
[69] |
李启泉, 王新玲, 王永, 等. ZrO2对陶瓷结合剂CBN磨具性能的影响 [J]. 工具技术, 2020, 54(2): 25-28.LI Qiquan, WANG Xinlin, WANG Yong, et al. Effect of ZrO2 on properties of ceramic bond CBN grinding tool [J]. Tool Engineering, 2020, 54(2): 25-28.
|
[70] |
田久根, 侯永改. ZrSiO4对陶瓷结合剂预熔玻璃料结构与性能的影响 [J]. 金刚石与磨料磨具工程,2019,39(6):48-52.TIAN Jiugen, HOU Yonggai. Effect of ZrSiO4 on properties and structures of low temperature vitrified bond [J]. Diamond & Abrasives Engineering,2019,39(6):48-52.
|
[71] |
SHAN D, LI Z, ZHU Y, et al. Influence of TiO2 on the physical properties of low-temperature ceramic vitrified bond and mechanical properties of CBN composites [J]. Ceramics International,2012,38(6):4573-4578. doi: 10.1016/j.ceramint.2012.02.035
|
[72] |
SUN X, YU T, WANG X, et al. Effect of TiO2 addition and high magnetic field sintering on properties of vitrified bond CBN composites [J]. Ceramics International,2018,44(14):16307-16313. doi: 10.1016/j.ceramint.2018.06.030
|
[73] |
ZHOU R C, LIU X P, WAN L, et al. Influence of TiO2 amount on the interfacial wettability and relevant properties of vitrified bond CBN composites [J]. Journal of European Ceramic Society,2021,41(1):300-309. doi: 10.1016/j.jeurceramsoc.2020.08.016
|
[74] |
肖攀, 张松, 刘旭辉. 氧化钛对陶瓷结合剂金刚石磨具性能及结构的影响 [J]. 超硬材料工程,2019,31(3):19-22. doi: 10.3969/j.issn.1673-1433.2019.03.005XIAO Pan, ZHANG Song, LIU Xuhui. Effect of titanium oxide on the properties and structures of vitrified bond diamond tools [J]. Superhard Material Engineering,2019,31(3):19-22. doi: 10.3969/j.issn.1673-1433.2019.03.005
|
[75] |
ZHU W, ZHOU L, TANG M, et al. Effect of TiO2 on the crystallization, thermal expansion and wetting behavior of Nd2O3-Al2O3-SiO2 glass ceramic filler [J]. Journal of European Ceramic Society,2021,41(16):351-357. doi: 10.1016/j.jeurceramsoc.2021.09.030
|
[76] |
李志宏, 朱玉梅, 董庆年. 含CaO陶瓷结合剂强度的研究 [J]. 金刚石与磨料磨具工程,1995(1):22-23.LI Zhihong, ZHU Yumei, DONG Qingnian. Study on the strength of ceramic binder containing CaO [J]. Diamond & Abrasives Engineering,1995(1):22-23.
|
[77] |
钟彦征, 张明岩, 侯永改, 等. BaO对低温陶瓷结合剂性能与结构的影响 [J]. 金刚石与磨料磨具工程,2013,33(4):61-64. doi: 10.13394/j.cnki.jgszz.2013.04.009ZHONG Yanzheng, ZHANG Mingyan, HOU Yonggai, et al. Effect of BaO on properties and structure of low temperature vitrified bond [J]. Diamond & Abrasives Engineering,2013,33(4):61-64. doi: 10.13394/j.cnki.jgszz.2013.04.009
|
[78] |
赵仕敬, 王海龙, 李剑, 等. Na2O含量对金刚石砂轮用Na2O-SiO2-Al2O3-B2O3系陶瓷结合剂性能的影响 [J]. 机械工程材料,2018,42(4):1-6. doi: 10.11973/jxgccl201804001ZHAO Shijing, WANG Hailong, LI Jian, et al. Effect of Na2O content on properties of on Na2O-SiO2-Al2O3-B2O3 system vitrified bond for diamond grinding wheel [J]. Materials for Mechanical Engineering,2018,42(4):1-6. doi: 10.11973/jxgccl201804001
|
[79] |
梅涛, 黄启忠, 王绍斌, 等. 碱金属氧化物Na2O对陶瓷结合剂金刚石磨具性能的影响 [J]. 硅酸盐通报,2021,40(3):978-983.MEI Tao, HUANG Qizhong, WANG Shaobin, et al. Effect of alkali metal oxide Na2O on performance of vitrified bond diamond abrasive tools [J]. Bulletin of the Chinese Ceramic Society,2021,40(3):978-983.
|
[80] |
ZHENG W, CHENG J, TANG L, et al. Effect of Y2O3 addition on viscosity and crystallization of the lithium aluminosilicate glasses [J]. Thermochimica Acta,2007,456(1):69-74. doi: 10.1016/j.tca.2007.01.022
|
[81] |
ZHENG W H, CHENG J S, LI H, et al. Structure and properties of the lithium aluminosilicate glasses with yttria addition [J]. Journal of Wuhan University of Technology-Materials Science Edition,2007,22:362-366. doi: 10.1007/s11595-005-2362-x
|
[82] |
侯永改, 祝聿霏, 张明岩, 等. 氧化钇对高速CBN砂轮用陶瓷结合剂玻璃料性能的影响 [J]. 中国稀土学报,2012,30(3):330-336.HOU Yonggai, ZHU Yufei, ZHANG Mingyan, et al. Effect of Y2O3 on properties of high-speed CBN grinding wheel with vitrified glass materials [J]. Journal of the Chinese Society of Rare Earths,2012,30(3):330-336.
|
[83] |
FENG D, LI Z, ZHU Y, et al. Synergistic effects of CeO2 and Y2O3 on the properties of glass-diamond composites [J]. Journal of Alloys and Compounds,2017,727:757-762. doi: 10.1016/j.jallcom.2017.08.076
|
[84] |
LI Q, LI Z, FENG D, et al. Comparison of rare earth oxides on properties of vitrified diamond composites [J]. Diamond and Related Materials,2017,71:85-89. doi: 10.1016/j.diamond.2016.12.010
|
[85] |
WANG X, MA Z, SUN X, et al. Effects of ZrO2 and Y2O3 on physical and mechanical properties of ceramic bond and ceramic CBN composites [J]. International Journal of Refractory Metals and Hard Materials,2018,75:18-24. doi: 10.1016/j.ijrmhm.2018.03.016
|
[86] |
WANG M, ZHENG Q, CHEN A, et al. Crystallization, thermal expansion and hardness of Y2O3-Al2O3-SiO2 glass [J]. Ceramics International,2021,47:25059-25066. doi: 10.1016/j.ceramint.2021.05.236
|
[87] |
LI X, WANG Y, YANG P, et al. Effect of Y2O3/La2O3 on structure and mechanical properties of Li2O-Al2O3-SiO2 glass [J]. Journal of Non-Crystalline Solids,2022,596:121847. doi: 10.1016/j.jnoncrysol.2022.121847
|
[88] |
张培强, 万隆, 刘小磐, 等. 碱金属氧化物对陶瓷结合剂性能的影响 [J]. 超硬材料工程,2007,19(3):21-23. doi: 10.3969/j.issn.1673-1433.2007.03.006ZHANG Peiqiang, WAN Long, LIU Xiaopan, et al. Influence of alkali metal oxides on properties of CBN vitrified bond [J]. Superhard Material Engineering,2007,19(3):21-23. doi: 10.3969/j.issn.1673-1433.2007.03.006
|
[89] |
WANG P F, LI Z H, ZHU Y M. Influences of alkaline-earth metal oxides on the properties of vitrified bond [J]. Key Engineering Materials,2008,368/369/370/371/372:1405-1407. doi: 10.4028/www.scientific.net/KEM.368-372.1405
|
[90] |
王鹏飞, 李志宏, 朱玉梅. 碱金属氧化物对陶瓷结合剂性能的影响 [J]. 稀有金属材料与工程,2007,36(A1):285-287.WANG Pengfei, LI Zhihong, ZHU Yumei. Effects of alkali metal oxides on the properties of vitrified bond [J]. Rare Metal Materials and Engineering,2007,36(A1):285-287.
|
[91] |
FENG D, WU W, WANG P, et al. Effects of Cu on properties of vitrified bond and vitrified CBN composites [J]. International Journal of Refractory Metals Hard Materials,2015,50:269-273. doi: 10.1016/j.ijrmhm.2015.01.002
|
[92] |
程利霞, 李志宏, 朱玉梅, 等. 金属Al粉对CBN磨具陶瓷结合剂性能的影响 [J]. 金刚石与磨料磨具工程,2008(5):44-47. doi: 10.3969/j.issn.1006-852X.2008.05.010CHEN Lixia, LI Zhihong, ZHU Yumei, et al. Effect of aluminum on the properties of vitrified bond for CBN grinding tool [J]. Diamond & Abrasives Engineering,2008(5):44-47. doi: 10.3969/j.issn.1006-852X.2008.05.010
|
[93] |
HE F, ZHANG W, ZHOU Q, et al. Effect of aluminum addition on microstructure and properties of SiO2-B2O3-Al2O3-CaO vitrified bond [J]. Journal of Wuhan University of Technology (Materials Science Edition),2016,31:1267-1271. doi: 10.1007/s11595-016-1524-3
|
[94] |
李君君, 王云峰, 张爱菊, 等. 金属铝粉和纳米Al2O3粉对陶瓷结合剂性能的影响 [J]. 硅酸盐通报,2021,40(11):3777-3783.LI Junjun, WANG Yunfeng, ZHANG Aiju, et al. Effects of metal aluminum powder and nano-Al2O3 powder on properties of vitrified bond [J]. Bulletin of the Chinese Ceramic Society,2021,40(11):3777-3783.
|
[95] |
XIA P, LI Z, WU W, et al. Effects of AlN on the thermal and mechanical properties of vitrified bond and vitrified CBN composites [J]. Ceramics International,2014,40(8):12759-12764. doi: 10.1016/j.ceramint.2014.04.129
|
[96] |
SUN X, YU T, CHEN Y, et al. Effect of cobalt on properties of vitrified bond and vitrified cubic boron nitride composites [J]. Ceramics International,2020,46(4):5337-5343. doi: 10.1016/j.ceramint.2019.10.286
|
[97] |
王志起, 万隆, 刘小磐, 等. 铁族金属对金刚石磨具陶瓷结合剂性能的影响 [J]. 复合材料学报,2012,29(5):94-98. doi: 10.13801/j.cnki.fhclxb.2012.05.033WANG Zhiqi, WAN Long, LIU Xiaopan, et al. Effect of iron group metal on the properties of vitrified bond for diamond grinding tool [J]. Acta Materiae Compositae Sinica,2012,29(5):94-98. doi: 10.13801/j.cnki.fhclxb.2012.05.033
|
[98] |
王志起, 万隆, 胡伟达, 等. Ti对陶瓷结合剂及金刚石磨具性能的影响 [J]. 金刚石与磨料磨具工程,2011,31(2):50-54. doi: 10.3969/j.issn.1006-852X.2011.02.011WANG Zhiqi, WAN Long, HU Weida, et al. Effect of titanium on the properties of vitrified bond and diamond grinding tool [J]. Diamond & Abrasives Engineering,2011,31(2):50-54. doi: 10.3969/j.issn.1006-852X.2011.02.011
|
[99] |
晋凯, 赵志伟, 郑红娟, 等. 纳米TiO2对微波法制备CBN 陶瓷磨具的结构和性能影响 [J]. 人工晶体学报,2018,47(10):2121-2127. doi: 10.3969/j.issn.1000-985X.2018.10.021JIN Kai, ZHAO Zhiwei, ZHEN Hongjuan, et al. Effect of nano TiO2 on structure and properties of CBN grinding tools prepared by microwave method [J]. Journal of Synthetic Crystals,2018,47(10):2121-2127. doi: 10.3969/j.issn.1000-985X.2018.10.021
|
[100] |
侯永改, 田久根, 马加加. 纳米氧化锆对金刚石磨具用陶瓷结合剂结构与性能的影响研究 [J]. 硅酸盐通报,2015,34(2):530-534. doi: 10.16552/j.cnki.issn1001-1625.2015.02.025HOU Yonggai, TIAN Jiugen, MA Jiajia. Effect of Nano-ZrO2 on properties and structure of vitrified bond for diamond grinding tools [J]. Bulletin of the Chinese Ceramic Society,2015,34(2):530-534. doi: 10.16552/j.cnki.issn1001-1625.2015.02.025
|
[101] |
CUI E, ZHAO J, WANG X. Effects of nano-ZrO2 content on microstructure and mechanical properties of GNPs/nano-ZrO2 reinforced Al2O3/Ti(C, N) composite ceramics [J]. Journal of the European Ceramic Society,2020,40(4):1532-1538. doi: 10.1016/j.jeurceramsoc.2019.11.039
|
[102] |
赵志伟, 王春华, 关春龙, 等. 纳米氧化物对CBN磨具陶瓷结合剂性能的影响 [J]. 金刚石与磨料磨具工程,2009(5):59-65. doi: 10.3969/j.issn.1006-852X.2009.06.013ZHAO Zhiwei, WANG Chunhua, GUAN Chunlong, et al. Effect of nano-oxides on properties of vitrified bond for CBN abrasive tools [J]. Diamond & Abrasives Engineering,2009(5):59-65. doi: 10.3969/j.issn.1006-852X.2009.06.013
|
[103] |
张景强, 王宛山, 于天彪, 等. 超高速陶瓷CBN砂轮纳米陶瓷结合剂性能实验研究 [J]. 中国机械工程,2014,25(1):82-87. doi: 10.3969/j.issn.1004-132X.2014.01.016ZHANG Jingqiang, WANG Wanshan, YU Tianbiao, et al. Experimental study of nano-ceramic bond based on super high-speed CBN grinding wheel [J]. China Mechanical Engineering,2014,25(1):82-87. doi: 10.3969/j.issn.1004-132X.2014.01.016
|
[104] |
刘鑫鑫, 刘世凯, 张吉祥. 纳米组分优化对陶瓷结合剂强度的影响研究 [J]. 超硬材料工程,2017,29(4):44-47. doi: 10.3969/j.issn.1673-1433.2017.04.010LIU Xinxin, LIU Shikai, ZHANG Jixiang. Study of the influence of nano component optimization on strength of ceramic bond [J]. Superhard Material Engineering,2017,29(4):44-47. doi: 10.3969/j.issn.1673-1433.2017.04.010
|
[105] |
ZHAO Z, HU W, ZHENG H, et al. Synthesis of vanadium and chromium carbides (V8C7-Cr3C2) nanocomposite via an in situ precursor method [J]. Rare Metals,2015,34:498-504. doi: 10.1007/s12598-015-0501-x
|
[106] |
CHEN F, ZHENG H, ZHAO Z, et al. Effect of V8C7-Cr3C2 nanocomposite on microstructure and properties of vitrified bond CBN grinding tools prepared by microwave heating method [J]. Materials Letters,2018,219:41-44. doi: 10.1016/j.matlet.2018.02.063
|
[107] |
侯永改, 张明岩, 祝聿霏. 超高速陶瓷结合剂CBN砂轮制造及应用 [J]. 工具技术,2012,46(4):3-8. doi: 10.3969/j.issn.1000-7008.2012.04.001HOU Yonggai, ZHANG Mingyan, ZHU Yufei. Manufacturing technology and application of ultra-high speed vitrified bond CBN grinding wheel [J]. Tool Engineering,2012,46(4):3-8. doi: 10.3969/j.issn.1000-7008.2012.04.001
|
[108] |
李兴山, 张景强. 超高速陶瓷结合剂CBN砂轮关键制备技术的研究 [J]. 工具技术,2011,45(4):3-7. doi: 10.3969/j.issn.1000-7008.2011.04.001LI Xingshan, ZHANG Jingqiang. Research on key manufacturing technologies for super-high speed vitrified bond CBN grinding wheel [J]. Tool Engineering,2011,45(4):3-7. doi: 10.3969/j.issn.1000-7008.2011.04.001
|
[109] |
徐明坤, 郭丽和, 周宁宁, 等. 等静压成型对多孔聚酰亚胺保持架成孔性能的影响研究 [J]. 机械工程学报,2022,58(16):178-188.XU Mingkun, GUO Lihe, ZHOU Ningning, et al. Influence of isostatic press on the pore properties of porous oil-containing polyimide retainer [J]. Journal of Mechanical Engineering,2022,58(16):178-188.
|
[110] |
李青, 尹育航, 刘鸿. 冷等静压成型工艺对陶瓷结合剂金刚石磨具性能的影响 [J]. 硅酸盐通报,2013,32(7):1379-1383. doi: 10.16552/j.cnki.issn1001-1625.2013.07.039LI Qing, YIN Yuhang, LIU Hong. Effect of properties of vitrified bond diamond abrasive tools by cold isostatic pressing [J]. Bulletin of the Chinese Ceramic Society,2013,32(7):1379-1383. doi: 10.16552/j.cnki.issn1001-1625.2013.07.039
|
[111] |
刘晓妍, 李婷, 罗旭东, 等. 制备工艺对La2O3掺杂氧化镁陶瓷性能的影响 [J]. 耐火材料,2022,56(1):34-37. doi: 10.3969/j.issn.1001-1935.2022.01.008LIU Xiaoyan, LI Ting, LUO Xudong, et al. Effects of preparation process on properties of La2O3 doped magnesia ceramics [J]. Refractories,2022,56(1):34-37. doi: 10.3969/j.issn.1001-1935.2022.01.008
|
[112] |
李建伟, 万隆, 常闯, 等. 溶胶-原位凝胶法制备陶瓷结合剂金刚石砂轮的结构与性能 [J]. 超硬材料工程,2018,30(1):7-12. doi: 10.3969/j.issn.1673-1433.2018.01.002LI Jianwei, WAN Long, CHANG Chuang, et al. Synthesis and performance of vitrified bond diamond grinding wheel by in-situ sol-gel method [J]. Superhard Material Engineering,2018,30(1):7-12. doi: 10.3969/j.issn.1673-1433.2018.01.002
|
[113] |
余剑武, 文丞, 黄帅, 等. 热压烧结工艺参数对超硬磨料砂轮节块性能的影响 [J]. 金刚石与磨料磨具工程,2016,36(6):29-34. doi: 10.13394/j.cnki.jgszz.2016.6.0007YU Jianwu, WEN Cheng, HUANG Shuai, et al. Effect of hot-press sintering parameters on properties of super-abrasive wheel segments [J]. Diamond & Abrasives Engineering,2016,36(6):29-34. doi: 10.13394/j.cnki.jgszz.2016.6.0007
|
[114] |
夏朋昭, 许莹, 蔡艳青, 等. 微波烧结工艺对Ti-Mg复合材料组织和性能的影响 [J]. 金属热处理,2022,47(9):18-26.XIA Pengzhao, XU Ying, CAI Yanqing, et al. Effect of microwave sintering process on microstructure and properties of Ti-Mg composites [J]. Heat Treatment of Metals,2022,47(9):18-26.
|
[115] |
曹燕, 程寓, 胡晓, 等. 微波烧结陶瓷结合剂金刚石砂轮磨削硅片性能的研究 [J]. 制造技术与机床,2020,6:122-125. doi: 10.19287/j.cnki.1005-2402.2020.06.023CAO Yan, CHENG Yu, HU Xiao, et al. Study on performance of vitrified bond diamond grinding wheels by microwave sintering grinding silicon water [J]. Manufacturing and Machine Tool,2020,6:122-125. doi: 10.19287/j.cnki.1005-2402.2020.06.023
|
[116] |
张於亮, 汪振华, 姜志嵩, 等. 微波烧结陶瓷结合剂金刚石砂轮研究 [J]. 硅酸盐通报,2022,41(10):3675-3679. doi: 10.16552/j.cnki.issn1001-1625.20220909.003ZHANG Yuliang, WANG Zhenhua, JIANG Zhisong, et al. Study on microwave sintering of ceramic bonded diamond grinding wheels [J]. Bulletin of the Chinese Ceramic Society,2022,41(10):3675-3679. doi: 10.16552/j.cnki.issn1001-1625.20220909.003
|
[117] |
瞿晓波, 李艳玲, 鲁涛, 等. 陶瓷结合剂 砂轮在凸轮轴加工中的应用 [J]. 金刚石与磨料磨具工程,2008(4):70-73.QU Xiaobo, LI Yanling, LU Tao, et al. Application of vitrified CBN grinding wheels in cam shaft grinding [J]. Diamond & Abrasives Engineering,2008(4):70-73.
|
[118] |
曹坚. 陶瓷CBN砂轮高速磨削凸轮轴的表面粗糙度研究 [J]. 制造业自动化,2011,33(7):49-50. doi: 10.3969/j.issn.1009-0134.2011.4a.16CAO Jian. Research on surface roughness in cam shaft high speed grinding with vitrified bond CBN wheel [J]. Manufacturing Automation,2011,33(7):49-50. doi: 10.3969/j.issn.1009-0134.2011.4a.16
|
[119] |
鲁涛, 杜雄, 李学文, 等. 陶瓷CBN砂轮在船舶曲轴磨削中的应用 [J]. 金刚石与磨料磨具工程,2015,35(6):28-31. doi: 10.13394/j.cnki.jgszz.2015.6.0006LU Tao, DU Xiong, LI Xuewen, et al. Ceramic CBN grinding wheel applied to grind ship crankshaft [J]. Diamond & Abrasives Engineering,2015,35(6):28-31. doi: 10.13394/j.cnki.jgszz.2015.6.0006
|
[120] |
张济洲, 史光远, 穆云超, 等. 陶瓷结合剂CBN砂轮对GCr15轴承钢锭子的磨削研究 [J]. 金刚石与磨料磨具工程,2004(3):57-59. doi: 10.3969/j.issn.1006-852X.2004.03.017ZHANG Jizhou, SHI Guangyuan, MU Yunchao, et al. Research on grinding of GCrl5 bearing steel spindle with CBN grinding wheel [J]. Diamond & Abrasives Engineering,2004(3):57-59. doi: 10.3969/j.issn.1006-852X.2004.03.017
|
[121] |
刘伟, 刘仁通, 邓朝晖, 等. 轴承钢GCr15高速外圆磨削试验研究 [J]. 兵器材料科学与工程,2018,41(5):40-44. doi: 10.14024/j.cnki.1004-244x.20180821.002LIU Wei, LIU Rentong, DENG Zhaohui, et al. High-speed external cylindrical plunge grinding of bearing steel GCr15 [J]. Ordnance Material Science and Engineering,2018,41(5):40-44. doi: 10.14024/j.cnki.1004-244x.20180821.002
|
[122] |
朱建辉, 闫宁, 师超钰, 等. 低浓度陶瓷CBN砂轮磨削性能分析 [J]. 机械设计与研究,2018,34(1):150-153. doi: 10.13952/j.cnki.jofmdr.2018.0034ZHU Jianghui, YAN Ning, SHI Chaoyu, et al. Research on grinding performance of vitrified CBN grinding wheels with low concentration [J]. Machine Design & Research,2018,34(1):150-153. doi: 10.13952/j.cnki.jofmdr.2018.0034
|
[123] |
李克华, 郜永娟, 李献会, 等. 应用陶瓷CBN砂轮的微型轴承套圈内圆磨削方案 [J]. 超硬材料工程,2020,32(1):19-23.LI Kehua, GAO Yongjuan, LI Xianhui, et al. Internal grinding solution of miniature bearing ring with vitrified bond CBN wheels [J]. Superhard Material Engineering,2020,32(1):19-23.
|
[124] |
陈涛, 盛晓敏, 宓海青, 等. 45#钢CBN砂轮高速磨削(120m/s)工艺研究 [J]. 湖南大学学报(自然科学版),2006,33(1):47-50.CHEN Tao, SHENG Xiaomin, MI Haiqing, et al. Study on the high speed grinding (120 m/s) process for 45# by CBN grinding wheel [J]. Journal of Hunan University (Natural Sciences),2006,33(1):47-50.
|
[125] |
ZHANG C, QU S, XI W, et al. Preparation of a novel vitrified bond CBN grinding wheel and study on the grinding performance [J]. Ceramics International,2022,48(11):15565-15575. doi: 10.1016/j.ceramint.2022.02.090
|
[126] |
STEPHEN D S, SETHURAMALINGAM P. Effects of grinding α-β titanium with 3% CNTs in CBN grinding wheel: An experimental study [J]. Materials Science Engineering,2020,912:1-10.
|
[127] |
WU C, LI B, LIU Y, et al. Surface roughness modeling for grinding of silicon carbide ceramics considering co-existence of brittleness and ductility [J]. International Journal Mechanical Sciences,2017,133:167-177. doi: 10.1016/j.ijmecsci.2017.07.061
|
[128] |
LOPES J C, FERNANDES L D M, DOMINGUES B B, et al. Effect of CBN grain friability in hardened steel plunge grinding [J]. The International Journal of Advanced Manufacturing Technology,2019,103:1567-1577. doi: 10.1007/s00170-019-03654-w
|
[129] |
SATO B K, RODRIGUEZ R L, TALON A G, et al. Grinding performance of AISI D6 steel using CBN wheel vitrified and resinoid bonded [J]. The International Journal Advanced Manufacturing Technology,2019,105:2167-2182. doi: 10.1007/s00170-019-04407-5
|
[130] |
CAGGIANO A, TETI R. CBN grinding performance improvement in aircraft engine components manufacture [J]. Procedia CIRP,2013,9:109-114. doi: 10.1016/j.procir.2013.06.177
|
[131] |
ADIBI H, REZAEI S M, SARHAN A A D. Analytical modeling of grinding wheel loading phenomena [J]. The International Journal of Advanced Manufacturing Technology,2013,68:473-485. doi: 10.1007/s00170-013-4745-z
|
[132] |
SANDEEP H, PANKAJ C, ARVIND C, et al. Effect of cooling environment on grinding performance of nickel-based superalloy Inconel 718 [J]. Journal of Applied Sciences,2012,12(10):947-954. doi: 10.3923/jas.2012.947.954
|
[133] |
YU T, BASTAWROS A F, CHANDRA A. Experimental and modeling characterization of wear and life expectancy of electroplated CBN grinding wheels [J]. The International Journal of Advanced Manufacturing Technology,2017,121:70-80.
|
[134] |
SHI Y, WANG Z, XU S, et al. Study on the grindability of nano-vitrified bond CBN grinding wheel for nickel-based alloy [J]. The International Journal of Advanced Manufacturing Technology,2019,100:1913-1921. doi: 10.1007/s00170-018-2807-y
|
[135] |
XU X, YU Y, HUANG H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys [J]. Wear,2003,255(7/8/9/10/11/12):1421-1426. doi: 10.1016/S0043-1648(03)00163-7
|
[136] |
张小福, 张红霞, 陈燕. 磨削钛合金用陶瓷CBN砂轮的研制 [J]. 新技术新工艺,2006(9):37-41. doi: 10.3969/j.issn.1003-5311.2006.09.013ZHANG Xiaofu, ZHANG Hongxia, CHEN Yan. Development of vitrified CBN grinding wheel for grinding titanium Alloy [J]. New Technology & New Process,2006(9):37-41. doi: 10.3969/j.issn.1003-5311.2006.09.013
|
[137] |
盛晓敏, 唐昆, 余剑武, 等. TC4钛合金超高速磨削工艺试验研究 [J]. 湖南大学学报,2008,35(9):28-32.SHENG Xiaomin, TANG Kun, YU Jianwu, et al. Process test research on TC4 titanium alloy in ultra-high speed grinding [J]. Journal of Hunan University,2008,35(9):28-32.
|
[138] |
胥军, 卢文壮, 王晗, 等. 陶瓷结合剂CBN砂轮高速磨削钛合金TC4-DT [J]. 金刚石与磨料磨具工程,2013,33(5):12-21. doi: 10.13394/j.cnki.jgszz.2013.05.016XU Jun, LU Wenzhuang, WANG Han, et al. High speed grinding TC4-DT alloy with vitrified CBN wheel [J]. Diamond & Abrasives Engineering,2013,33(5):12-21. doi: 10.13394/j.cnki.jgszz.2013.05.016
|
[139] |
SHI Y, CHEN L, XIN H, et al. Investigation on the grinding properties of high thermal conductivity vitrified bond CBN grinding wheel for titanium alloy [J]. The International Journal of Advanced Manufacturing Technology,2020,107:1539-1549. doi: 10.1007/s00170-020-05134-y
|