CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Bi2O3-B2O3体系的陶瓷结合剂金刚石砂轮制备及其对单晶硅的磨削性能

白福厚 廖燕玲 轩闯 张凤林

白福厚, 廖燕玲, 轩闯, 张凤林. 基于Bi2O3-B2O3体系的陶瓷结合剂金刚石砂轮制备及其对单晶硅的磨削性能[J]. 金刚石与磨料磨具工程, 2023, 43(4): 432-439. doi: 10.13394/j.cnki.jgszz.2022.0137
引用本文: 白福厚, 廖燕玲, 轩闯, 张凤林. 基于Bi2O3-B2O3体系的陶瓷结合剂金刚石砂轮制备及其对单晶硅的磨削性能[J]. 金刚石与磨料磨具工程, 2023, 43(4): 432-439. doi: 10.13394/j.cnki.jgszz.2022.0137
BAI Fuhou, LIAO Yanling, XUAN Chuang, ZHANG Fenglin. Preparation of vitrified bond diamond wheel based on Bi2O3-B2O3 glass system and its grinding performance on monocrystalline silicon[J]. Diamond & Abrasives Engineering, 2023, 43(4): 432-439. doi: 10.13394/j.cnki.jgszz.2022.0137
Citation: BAI Fuhou, LIAO Yanling, XUAN Chuang, ZHANG Fenglin. Preparation of vitrified bond diamond wheel based on Bi2O3-B2O3 glass system and its grinding performance on monocrystalline silicon[J]. Diamond & Abrasives Engineering, 2023, 43(4): 432-439. doi: 10.13394/j.cnki.jgszz.2022.0137

基于Bi2O3-B2O3体系的陶瓷结合剂金刚石砂轮制备及其对单晶硅的磨削性能

doi: 10.13394/j.cnki.jgszz.2022.0137
基金项目: 广东省珠江本土创新团队项目(2017BT01C169),佛山市核心技术攻关项目( 1920001000361)。
详细信息
    通讯作者:

    张凤林,男,1972年生,教授。主要研究方向:难加工材料的磨削加工以及超硬材料制品。E-mail:zhangfl@gdut.edu.cn

  • 中图分类号: TQ153

Preparation of vitrified bond diamond wheel based on Bi2O3-B2O3 glass system and its grinding performance on monocrystalline silicon

  • 摘要: 针对陶瓷结合剂烧结温度高的问题,提出一种基于Bi2O3-B2O3的新型低温陶瓷结合剂。分析添加纳米SiC和纳米ZrO2对结合剂物相组成、流动性和力学性能的影响,并探索添加核桃壳粉造孔剂对金刚石砂轮微观形貌的影响;制备基于Bi2O3-B2O3体系的陶瓷结合剂金刚石杯形砂轮,测试其对单晶硅晶圆片的磨削性能。结果表明:添加纳米SiC会导致陶瓷结合剂中出现一定量的Bi单质,破坏结合剂的[BiO4]玻璃网络;添加纳米SiC及纳米ZrO2后,结合剂的流动性降低;随烧结温度上升,结合剂的流动性、抗弯强度和硬度有增大的趋势,在560 ℃烧结时结合剂的抗弯强度和硬度达到最大。随着造孔剂含量的增大,砂轮中大气孔的数量显著增多、尺寸显著增大。在砂轮线速度为12.56 m/s,工件转速为5.23 m/s,进给速度为0.1 μm/s条件下,使用以M10/20金刚石(粒度号为800目)制备的砂轮磨削加工单晶硅晶圆片,其磨削比为790,表面粗糙度为0.16 μm。

     

  • 图  1  陶瓷结合剂微观形貌

    Figure  1.  Microstructure of vitrified bond

    图  2  陶瓷结合剂金刚石砂轮烧结温度曲线

    Figure  2.  Sintering temperature curve of vitrified bond diamond grinding wheel

    图  3  砂轮长条试样

    Figure  3.  Sintered specimen

    图  4  陶瓷结合剂金刚石杯形砂轮

    Figure  4.  Vitrified bond diamond cup grinding wheel

    图  5  Bi2O3-B2O3陶瓷结合剂和添加纳米SiC和纳米ZrO2后的XRD图谱

    Figure  5.  XRD patterens of pure Bi2O3-B2O3 vitrified bond or bonds containing nano-Si or nano- ZrO2

    图  6  陶瓷结合剂BSE图

    Figure  6.  BSE image of vitrified bond

    图  7  烧结温度对不同Bi2O3-B2O3陶瓷结合剂的流动性的影响

    Figure  7.  Effect of sintering temperature on fluidity of Bi2O3-B2O3 vitrified bonds with different compositions

    图  8  烧结温度对不同Bi2O3-B2O3陶瓷结合剂的抗弯强度的影响

    Figure  8.  Effect of sintering temperature on flexural strength of Bi2O3-B2O3 vitrified bond with different compositions

    图  9  烧结温度对不同Bi2O3-B2O3陶瓷结合剂的维氏硬度的影响

    Figure  9.  Effect of sintering temperature on vickers hardness of Bi2O3-B2O3 vitrified bond with different compositions

    图  10  560 ℃下烧结添加质量分数为(a) 1% (b) 2% (c) 3%的造孔剂后砂轮断面微观形貌

    Figure  10.  Microstructure of grinding wheel sintered at 560 ℃ with mass fractions of pore former: (a) 1% (b) 2% (c) 3%

    图  11  单晶硅晶圆片磨削加工示意图

    Figure  11.  Schematic diagram of grinding monocrystalline silicon wafer

    图  12  基于Bi2O3-B2O3体系的陶瓷结合剂金刚石砂轮在不同参数下磨削单晶硅晶圆片的磨削比

    Figure  12.  Grinding ratios of grinding monocrystalline silicon wafer with Bi2O3-B2O3 vitrified bond grinding wheel under different parameters

    图  13  基于Bi2O3-B2O3体系的陶瓷结合剂金刚石砂轮在不同参数下磨削单晶硅的表面粗糙度

    Figure  13.  Surface roughness of monocrystalline silicon wafer ground by Bi2O3-B2O3 vitrified bond grinding wheel under different parameters

    图  14  工件转速为3.14 m/s时单晶硅的表面形貌

    Figure  14.  Surface morphologies of silicon wafer rotating at 3.14 m/s

    图  15  工件转速为5.23 m/s时单晶硅的表面形貌

    Figure  15.  Surface morphologies of silicon wafer rotating at 5.23 m/s

    表  1  Bi2O3-B2O3陶瓷结合剂成分

    Table  1.   Composition of Bi2O3-B2O3 vitrified bond

    编号Bi2O3
    物质的
    量分数
    N1 / %
    B2O3
    物质的
    量分数
    N2 / %
    SiO2
    物质的
    量分数
    N3 / %
    Al2O3
    物质的
    量分数
    N4 / %
    额外添加
    (质量分数)
    A140401010
    A2404010105%纳米SiC
    (100 nm)
    A3404010105%纳米ZrO
    (100 nm)2
    下载: 导出CSV

    表  2  陶瓷结合剂金刚石砂轮配方

    Table  2.   Formula of vitrified bond diamond grinding wheel

    序号金刚石
    质量分数
    wd / %
    绿碳化硅
    质量分数
    ws / %
    结合剂
    质量数
    wb / %
    造孔剂
    质量分数
    wp / %
    13535291
    23534292
    33533293
    下载: 导出CSV
  • [1] CHEN S P, LIU X P, WAN L, et al. Effect of V2O5 addition on the wettability of vitrified bond to diamond abrasive and grinding performance of diamond wheels [J]. Diamond and Related Materials,2019,102:107672. doi: 10.1016/j.diamond.2019.107672
    [2] ZHANG X H, WANG Y H, ZANG J B, et al. Improvement of thermal stability of diamond by adding Ti powder during sintering of diamond/borosilicate glass composites [J]. Journal of the European Ceramic Society,2011,31(10):1897-1903. doi: 10.1016/j.jeurceramsoc.2011.04.009
    [3] HOU Y G, QIAO G Y, SHANG Y, et al. Effect of porosity on the grinding performance of vitrified bond diamond wheels for grinding PCD blades [J]. Ceramics International,2012,38(8):6215-6220. doi: 10.1016/j.ceramint.2012.04.074
    [4] ZHOU H, GUO M, WANG X. Ultraprecision grinding of silicon wafers using a newly developed diamond wheel [J]. Materials Science in Semiconductor Processing,2017,68:238-244. doi: 10.1016/j.mssp.2017.06.031
    [5] 张红轩. 金刚石砂轮磨削蓝宝石晶片加工过程实验研究 [D]. 广州: 广东工业大学, 2020.

    ZHANG Hongxuan. Experimental study of sapphire wafer grinding process with diamond wheel [D]. Guangzhou: Guangdong University of Technology. 2020.
    [6] RABIEY M, JOCHUM N, KUSTER F. High performance grinding of zirconium oxide (ZrO2) using hybrid bond diamond tools [J]. CIRP Annals - Manufacturing Technology,2013,62(1):343-346. doi: 10.1016/j.cirp.2013.03.073
    [7] 万明. RO及R2O对金刚石砂轮陶瓷结合剂性能的影响 [D]. 秦皇岛: 燕山大学, 2018.

    WANG Ming. Effect of RO and R2O on the properties of vitrified bond diamond wheel [D]. Qinhuangdao: Yanshan University, 2018.
    [8] GUO B J, HONG Y. Influence of Li2O addition on the performance of vitrified bond and vitrified diamond composites [J]. Journal of Wuhan University of Technology (Materials Science),2020,35(04):699-705. doi: 10.1007/s11595-020-2310-9
    [9] WANG X Z, MA Z L, SUN X, et al. Effects of ZrO2 and Y2O3 on physical and mechanical properties of ceramic bond and ceramic CBN composites [J]. International Journal of Refractory Metals and Hard Materials,2018,75:18-24. doi: 10.1016/j.ijrmhm.2018.03.016
    [10] LIN K H, PENG S F, LIN S T. Sintering parameters and wear performances of vitrified bond diamond grinding wheels [J]. International Journal of Refractory Metals & Hard Materials,2007,25(1):25-31.
    [11] 左宏森, 关春龙. 造孔剂对金属结合剂金刚石磨具力学性能的影响 [J]. 金刚石与磨料磨具工程,2009(5):82-85. doi: 10.3969/j.issn.1006-852X.2009.05.018

    ZUO Hongsen, GUAN Chunlong. Effect of pore-forming agent on mechanical properties of metal-bonded diamond abrasive tools [J]. Diamond & Abrasive Engineering,2009(5):82-85. doi: 10.3969/j.issn.1006-852X.2009.05.018
    [12] LV X F, LI Z H, ZHU Y M, et al. Effect of PMMA pore former on microstructure and mechanical properties of vitrified bond CBN grinding wheels [J]. Ceramics International,2013,39(2):1893-1899. doi: 10.1016/j.ceramint.2012.08.038
    [13] GUO W, FU L, HE P, et al. Low-temperature brazing of alumina ceramics with bismuth-borate glass in air [J]. Materials Characterization,2019,149:158-164. doi: 10.1016/j.matchar.2019.01.020
    [14] LIN P P, LIN T, HE P, et al. Investigation of microstructure and mechanical property of Li–Ti ferrite/Bi2O3-B2O3-SiO2 glass/Li–Ti ferrite joints reinforced by FeBi5Ti3O15 whiskers [J]. Journal of the European Ceramic Society,2015,35(9):2453-2459. doi: 10.1016/j.jeurceramsoc.2015.03.019
    [15] GUO W, WANG T, LIN T S, et al. Bismuth borate zinc glass braze for bonding sapphire in air [J]. Materials Characterization,2018,137:67-76. doi: 10.1016/j.matchar.2018.01.002
    [16] CHEN H Y, REN X W, GUO W, et al. Microstructures and mechanical properties of brazed Al2O3/Cu joints with bismuth glass [J]. Ceramics International,2019,45(13):16070-16077. doi: 10.1016/j.ceramint.2019.05.123
    [17] LIU Y, DONG L L, LU J W, et al. Microstructure and mechanical properties of SiC nanowires reinforced titanium matrix composites [J]. Journal of Alloys and Compounds,2020,819:152953. doi: 10.1016/j.jallcom.2019.152953
    [18] 田英良, 孙诗兵. 新编玻璃工艺学 [M]. 北京: 中国轻工业出版社, 2009, 63-78.

    TIAN Yingliang, SUN Shibing. New glass technology [M]. Beijing: China Light Industry Press, 2009, 63-78.
    [19] 侯永改, 田久根, 马加加. 纳米氧化锆对金刚石磨具用陶瓷结合剂结构与性能的影响研究 [J]. 硅酸盐学报,2015,34(2):530-534. doi: 10.16552/j.cnki.issn1001-1625.2015.02.025

    HOU Yongai, TIAN Jiugen, MA Jiajia. Effect of nano-ZrO2 on properties and structure of vitrified bond for diamond grinding tools [J]. Journal of the Chinese Ceramic Society,2015,34(2):530-534. doi: 10.16552/j.cnki.issn1001-1625.2015.02.025
    [20] AGARWAL S, RAO P V. A probabilistic approach to predict surface roughness in ceramic grinding [J]. International Journal of Machine Tools & Manufacture: Design, Research and Application,2005,45(6):606-616. doi: 10.1016/j.ijmachtools.2004.10.005
    [21] HECHER R L, LIANG S Y. Predictive modeling of surface roughness in grinding [J]. International Journal of Machine Tools & Manufacture: Design, Research and Application,2003,43(8):755-761. doi: 10.1016/S0890-6955(03)00055-5
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  222
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2022-12-04
  • 录用日期:  2022-12-28
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回