CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于响应面法的单晶硅CMP抛光工艺参数优化

卞达 宋恩敏 倪自丰 钱善华 赵永武

卞达, 宋恩敏, 倪自丰, 钱善华, 赵永武. 基于响应面法的单晶硅CMP抛光工艺参数优化[J]. 金刚石与磨料磨具工程, 2022, 42(6): 745-752. doi: 10.13394/j.cnki.jgszz.2022.0081
引用本文: 卞达, 宋恩敏, 倪自丰, 钱善华, 赵永武. 基于响应面法的单晶硅CMP抛光工艺参数优化[J]. 金刚石与磨料磨具工程, 2022, 42(6): 745-752. doi: 10.13394/j.cnki.jgszz.2022.0081
BIAN Da, SONG Enmin, NI Zifeng, QIAN Shanhua, ZHAO Yongwu. Optimization of CMP processing parameters for Si based on response surface method[J]. Diamond & Abrasives Engineering, 2022, 42(6): 745-752. doi: 10.13394/j.cnki.jgszz.2022.0081
Citation: BIAN Da, SONG Enmin, NI Zifeng, QIAN Shanhua, ZHAO Yongwu. Optimization of CMP processing parameters for Si based on response surface method[J]. Diamond & Abrasives Engineering, 2022, 42(6): 745-752. doi: 10.13394/j.cnki.jgszz.2022.0081

基于响应面法的单晶硅CMP抛光工艺参数优化

doi: 10.13394/j.cnki.jgszz.2022.0081
基金项目: 国家自然科学基金(51675232);江苏省自然科学基金(BK20190611)。
详细信息
    作者简介:

    卞达,男,1990年生,博士。主要研究方向:先进表面技术。E-mail:biand@jiangnan.edu.cn

    通讯作者:

    赵永武,男,1962年生,博士、教授。主要研究方向:先进表面技术,超精密加工。E-mail: zhaoyw@jiangnan.edu.cn

  • 中图分类号: TG58;TG73

Optimization of CMP processing parameters for Si based on response surface method

  • 摘要: 为提高单晶硅化学机械抛光(chemical mechanical polishing,CMP)的表面质量和抛光速度,通过响应面法优化CMP抛光压力、抛光盘转速和抛光液流量3个工艺参数,结果表明抛光压力、抛光盘转速、抛光液流量对材料去除率和抛光后表面粗糙度的影响依次减小。通过数学模型和试验验证获得最优的工艺参数为:抛光压力,48.3 kPa;抛光盘转速,70 r/min;抛光液流量,65 mL/min。在此工艺下,单晶硅CMP的材料去除率为1 058.2 nm/min,表面粗糙度为0.771 nm,其抛光速度和表面质量得到显著提高。

     

  • 图  1  抛光压力对硅片抛光试验结果的影响

    Figure  1.  Influence of polishing pressure on material removal rate and surface roughness of Si polishing

    图  2  抛光盘转速对硅片抛光试验结果的影响

    Figure  2.  Influence of polishing rotational speed on material removal rate and surface roughness of Si polishing

    图  3  抛光液流量对硅片抛光试验结果的影响

    Figure  3.  Influence of polishing fluid flow rate on material removal rate and surface roughness of Si polishing

    图  4  工艺参数对材料去除率影响的响应面

    Figure  4.  Influence of processing parameters on material removal rate model

    图  5  工艺参数对表面粗糙度影响的响应面

    Figure  5.  Influence of processing parameters on surface roughness

    图  6  不同工艺参数组合抛光后硅片的表面形貌

    Figure  6.  Surface topographies of Si wafer after polishing with different processing parameters

    表  1  响应面因素及水平值

    Table  1.   Experimental parameters and levels

    水平 抛光压力
    p/ kPa
    A
    抛光盘转速
    n/ (r·min−1)
    B
    抛光液流量
    q/ (mL·min−1)
    C
    −1 29.0 60 40
    0 38.6 80 60
    1 48.3 100 80
    下载: 导出CSV

    表  2  试验设计方案及试验结果

    Table  2.   Experimental plan and result

    编号 A
    kPa
    B
    r/mim
    C
    mL/min
    X
    nm/min
    Y
    nm
    1 38.6 80 60 1 008.2 0.808
    2 48.3 80 40 1 064.1 0.834
    3 48.3 80 80 1 138.7 0.792
    4 38.6 100 80 1 051.6 0.846
    5 38.6 80 60 982.1 0.807
    6 29.0 100 60 867.0 0.861
    7 29.0 60 60 734.6 0.984
    8 48.3 100 60 1 180.9 0.832
    9 29.0 80 80 854.8 0.919
    10 38.6 80 60 978.9 0.797
    11 48.3 60 60 1 034.2 0.837
    12 38.6 80 60 989.9 0.818
    13 38.6 60 80 861.1 0.866
    14 38.6 60 40 835.4 0.910
    15 38.6 100 40 1 017.6 0.874
    16 38.6 80 60 994.4 0.822
    17 29.0 80 40 798.4 0.952
    下载: 导出CSV

    表  3  材料去除率的回归模型方差分析结果

    Table  3.   Variance analysis results of material removal rate model

    来源 平方和 自由度 均方差 F P
    模型 25 876.75 9 25 876.75 65.28 <0.000 1
    A 1.691 × 105 1 1.691 × 105 426.60 <0.000 1
    B 53 105.40 1 53 105.40 133.97 <0.000 1
    C 4 545.81 1 4 545.81 11.47 0.011 7
    AB 51.12 1 51.12 0.13 0.730 1
    AC 82.81 1 82.81 0.21 0.661 5
    BC 17.22 1 17.22 0.04 0.840 8
    A2 204.84 1 204.84 0.52 0.495 5
    B2 3 676.64 1 3 676.64 9.28 0.018 7
    C2 1 638.21 1 1 638.21 4.13 0.081 6
    残差 2 774.76 7 396.39
    失拟项 2 240.98 3 746.99 5.60 0.064 8
    纯误差 533.78 4 133.45
    总离差 2.357 × 105 16
    下载: 导出CSV

    表  4  表面粗糙度的回归模型方差分析结果

    Table  4.   Variance analysis results of surface roughness model

    来源 平方和 自由度 均方差 F P
    模型 4.800 × 10−2 9 5.300 × 10−3 22.71 0.000 2
    A 2.200 × 10−2 1 2.200 × 10−2 94.94 <0.000 1
    B 4.232 × 10−3 1 4.232 × 10−3 18.14 0.003 8
    C 2.701 × 10−3 1 2.701 × 10−3 11.58 0.011 4
    AB 3.481 × 10−3 1 3.481 × 10−3 14.92 0.006 2
    AC 2.025 × 10−5 1 2.025 × 10−5 0.09 0.776 9
    BC 6.400 × 10−5 1 6.400 × 10−5 0.27 0.616 7
    A2 4.918 × 10−3 1 4.918 × 10−3 21.07 0.002 5
    B2 4.846 × 10−3 1 4.846 × 10−3 20.77 0.002 6
    C2 3.708 × 10−3 1 3.708 × 10−3 15.89 0.005 3
    残差 1.633 × 10−3 7 2.333 × 10−4
    失拟项 1.244 × 10−3 3 4.147 × 10−4 4.26 0.097 6
    纯误差 3.892 × 10−4 4 9.730 × 10−5
    总离差 4.900 × 10−2 16
    下载: 导出CSV

    表  5  模型可信度分析

    Table  5.   Model reliability analysis

    响应值 相关系数
    R1
    校正相关系数
    R2
    模型精密系数
    R3
    变异系数
    R4/ %
    X 0.988 2 0.973 1 29.713 2.06
    Y 0.966 9 0.924 3 15.588 1.78
    下载: 导出CSV

    表  6  模型预测值与试验结果对比

    Table  6.   Model predictions vs test results

    目标参数 预测值 试验值 相对误差
    材料去除率 dMRR/ (nm·min−1) 1 194.2 1 238.4 3.7%
    表面粗糙度 Ra / nm 0.789 0.771 −2.3%
    下载: 导出CSV
  • [1] 宋恩敏, 卞达, 徐浩, 等. 碳酸胍和聚乙二醇对单晶硅片CMP的影响 [J]. 固体电子学研究与进展,2022,42(1):63-67, 79.

    SONG Enmin, BIAN Da, XU Hao, et al. Effect of guanidine carbonate and polyethylene glycol on CMP of single crystal silicon wafer [J]. Research & Progress of SSE,2022,42(1):63-67, 79.
    [2] HSIEN Y H, HSU H K, TSAI T C, et al. Process development of high-k metal gate aluminum CMP at 28 nm technology node [J]. Microelectronic Engineering,2012,92:19-23. doi: 10.1016/j.mee.2011.04.013
    [3] 宫学源. 中国半导体产业发展趋势及上游新材料投资机会 [J]. 新材料产业,2020,4:22-29.

    GONG Xueyuan. China semiconductor industry development trend and upstream new materials investment opportunities [J]. New Materials Industry,2020,4:22-29.
    [4] 赵琦. 单晶硅元件CMP加工表面划痕去除和清洗工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021.

    ZHAO Qi. Study on scratch removal and cleaning process of CMP machining surface of monocrystalline silicon element [D]. Harbin: Harbin Institute of Technology, 2021.
    [5] 徐嘉慧, 康仁科, 董志刚, 等. 硅片化学机械抛光技术的研究进展 [J]. 金刚石与磨料磨具工程,2020,40(4):24-33. doi: 10.13394/j.cnki.jgszz.2020.4.0004

    XU Jiahui, KANG Renke, DONG Zhigang, et al. Review on chemical mechanical polishing of silicon wafers [J]. Diamond & Abrasives Engineering,2020,40(4):24-33. doi: 10.13394/j.cnki.jgszz.2020.4.0004
    [6] SEUNGHEE O, JONGWON S. An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes [J]. Wear,2009,266:839-849. doi: 10.1016/j.wear.2008.12.014
    [7] PARK S W, KIM C B, KIM S Y, et al. Design of experimental optimization for ULSI CMP process applications [J]. Microelectronic Engineering,2003,66:488-495. doi: 10.1016/S0167-9317(02)00932-2
    [8] 詹阳, 周国安. 化学机械抛光过程优化研究 [J]. 电子工业专用设备,2009,38(4):37-39. doi: 10.3969/j.issn.1004-4507.2009.04.007

    ZHAN Yang, ZHOU Guoan. Optimization of chemical mechanical polishing process [J]. Special Equipment for Electronic Industry,2009,38(4):37-39. doi: 10.3969/j.issn.1004-4507.2009.04.007
    [9] 刘海旭, 武庆东, 曹潇俊, 等. 基于响应曲面法的304不锈钢化学机械抛光工艺参数优化 [J]. 金刚石与磨料磨具工程,2021,41(2):89-95.

    LIU Haixu, WU Qingdong, CAO Xiaojun, et al. Optimization of process parameters for chemical mechanical polishing of 304 stainless steel based on response surface method [J]. Diamond & Abrasives Engineering,2021,41(2):89-95.
    [10] 李庆, 陈绍坤, 彭亚男, 等. 304不锈钢化学机械抛光工艺参数研究 [J]. 金刚石与磨料磨具工程,2016,36(5):21-25.

    LI Qing, CHEN Shaokun, PENG Yanan, et al. Study on process parameters of chemical mechanical polishing of 304 stainless steel [J]. Diamond & Abrasives Engineering,2016,36(5):21-25.
    [11] 莫益栋, 李庆忠. TFT-LCD玻璃基板精细雾化抛光的工艺参数优化 [J]. 中国表面工程,2015,28(2):121-125. doi: 10.11933/j.issn.1007-9289.2015.02.014

    MO Yidong, LI Qingzhong. Optimizing process parameters of ultrasound fine atomization CMP on TEF-LCD glass substrate [J]. China Mechanical Engineering,2015,28(2):121-125. doi: 10.11933/j.issn.1007-9289.2015.02.014
    [12] 季军, 何平, 潘国峰, 等. CMP工艺对Co/Cu去除速率及速率选择比的影响研究 [J]. 微电子学,2018,48(5):699-704. doi: 10.13911/j.cnki.1004-3365.170534

    JI Jun, HE Ping, PAN Guofeng, et al. Study on the effect of CMP process on removal rate and removal rate selection ratio of Co/Cu [J]. Microelectronics,2018,48(5):699-704. doi: 10.13911/j.cnki.1004-3365.170534
    [13] 袁巨龙, 毛美姣, 李敏, 等. 基于响应曲面法的YG8硬质合金刀片化学机械抛光工艺参数优化 [J]. 中国机械工程,2018,29(19):2290-2297. doi: 10.3969/j.issn.1004-132X.2018.19.004

    YUAN Julong, MAO Meijiao, LI Min, et al. Optimization of process parameters for chemical mechanical polishing of YG8 carbide blade based on response surface method [J]. China Mechanical Engineering,2018,29(19):2290-2297. doi: 10.3969/j.issn.1004-132X.2018.19.004
    [14] BUFFA G, DONATI L, FRATINI L, et al. Solid state bonding mechanics in extrusion and FSW: Experimental tests and numerical analyses [J]. AIP Conference Proceedings,2007,907(1):590-595.
    [15] 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用 [J]. 实验室研究与探索,2015,34(8):41-45. doi: 10.3969/j.issn.1006-7167.2015.08.011

    LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface methodology in experimental design and optimization [J]. Laboratory Research and Exploration,2015,34(8):41-45. doi: 10.3969/j.issn.1006-7167.2015.08.011
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  116
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-07-06
  • 录用日期:  2022-08-01
  • 刊出日期:  2023-01-12

目录

    /

    返回文章
    返回