CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PCBN材料的组织结构与力学性能

张彬 郭宏毅

张彬, 郭宏毅. PCBN材料的组织结构与力学性能[J]. 金刚石与磨料磨具工程, 2022, 42(6): 699-704. doi: 10.13394/j.cnki.jgszz.2022.0078
引用本文: 张彬, 郭宏毅. PCBN材料的组织结构与力学性能[J]. 金刚石与磨料磨具工程, 2022, 42(6): 699-704. doi: 10.13394/j.cnki.jgszz.2022.0078
ZHANG Bin, GUO Hongyi. Microstructures and mechanical properties of PCBN materials[J]. Diamond & Abrasives Engineering, 2022, 42(6): 699-704. doi: 10.13394/j.cnki.jgszz.2022.0078
Citation: ZHANG Bin, GUO Hongyi. Microstructures and mechanical properties of PCBN materials[J]. Diamond & Abrasives Engineering, 2022, 42(6): 699-704. doi: 10.13394/j.cnki.jgszz.2022.0078

PCBN材料的组织结构与力学性能

doi: 10.13394/j.cnki.jgszz.2022.0078
详细信息
    作者简介:

    张彬,男,1972年生,工程师。主要研究方向:机械工程材料、特种设备检验检测。E-mail:week72@163.com

  • 中图分类号: TQ164; TG71; TH140.7

Microstructures and mechanical properties of PCBN materials

  • 摘要: 以CBN-TiN-Ti-Al2O3为初始原料,采用高温高压法在1500 ℃不同保温时间下制备PCBN材料,探讨其在不同保温时间下的物相组成、显微结构、力学性能和切削性能。结果表明:保温时间对PCBN材料物相组成无明显影响,但有助于提高其结晶度,实现其烧结均匀化和致密化;在保温时间为9.00 min时,能获得综合性能最佳的PCBN材料,其相对密度为99.1%,抗弯强度为910.9 MPa,磨耗比为7120,显微硬度为33.5 GPa;用此PCBN做成的刀具加工模具钢零件,最多可加工365个。

     

  • 图  1  T4的烧结工艺曲线

    Figure  1.  Sintering process curves of T4

    图  2  不同保温时间下样品的XRD图谱

    Figure  2.  XRD patterns of samples at different holding times

    图  3  不同保温时间下样品的SEM形貌

    Figure  3.  SEM morphologies of samples under different holding times

    图  4  不同保温时间下样品的相对密度

    Figure  4.  Relative densities of samples under different holding times

    图  5  不同保温时间下样品的力学性能

    Figure  5.  Mechanical properties of samples under different holding times

    图  6  TNGA160408型刀具实物图

    Figure  6.  Physical map of TNGA160408 tool

    图  7  模具钢零件实物图及尺寸图

    Figure  7.  Physical drawing and dimension drawing of die steel part

    表  1  试验配方及合成工艺参数

    Table  1.   Experimental formula and synthetic process parameters

    样品编号 配方 合成工艺参数
    CBN
    ω1 / %
    TiN+Ti+Al2O3
    ω2 / %
    压力
    p / GPa
    温度
    θ1 / ℃
    保温时间
    t1 / min
    T1
    60

    40

    5.5

    1 500
    3.00
    T2 6.00
    T3 9.00
    T4 12.00
    下载: 导出CSV

    表  2  4种刀具的切削试验结果

    Table  2.   Cutting test results of 4 kinds of tools

    刀具编号 加工零件数 n / 个 切削参数
    T1 104 vc=120 m/min,ap=0.1 mm,
    f=0.15 mm/r
    T2 312
    T3 365
    T4 228
    下载: 导出CSV
  • [1] ZHANG L L, KOU Z L, XU C, et. al. Sintering behaviors of fine-grained CBN-10wt.% Al3.21Si0.47 system under high pressure [J]. Diamond & Related Materials,2012,29:84-88.
    [2] 邱慧, 吴媛媛, 班新星, 等. TiC含量对PCBN微观组织与力学性能的影响 [J]. 热加工工艺,2017,46(14):54-57.

    QIU Hui, WU Yuanyuan, BAN Xinxing, et al. Effects of TiC content on microstructure and mechanical properties of PCBN [J]. Hot Working Technology,2017,46(14):54-57.
    [3] 王永凯, 位星, 王大鹏, 等. 六方氮化硼直接转化合成多晶立方氮化硼的研究 [J]. 金刚石与磨料磨具工程,2021,41(3):19-22.

    WANG Yongkai, WEI Xing, WANG Dapeng, et al. Study on synthesis of polycrystalline cubic boron nitride from hexagonal boron nitride by direct phase transition [J]. Diamond & Abrasives Engineering,2021,41(3):19-22.
    [4] 莫培程, 陈超, 陈家荣, 等. CBN/TiC/Al合成PCBN及其性能研究 [J]. 人工晶体学报, 2020, 49(3): 480-484.

    MO Peicheng, CHEN Chao, CHEN Jiarong, et al. Study on synthesis and properties of PCBN from CBN/TiC/Al [J]. Journal of Synthetic Crystals, 2020, 49(3): 480-484.
    [5] 姜伟, 周卫宁, 林峰. CBN-Ti-B-Al-SiC系在高温高压下的烧结 [J]. 超硬材料工程, 2010, 22(4): 24-29.

    JIANG Wei, ZHOU Weining, LIN Feng. Sintering CBN-Ti-B-Al-SiC under high temperature and high pressure [J]. Superhard Material Engineering, 2010, 22(4): 24-29.
    [6] 邹娟, 成照楠, 邹芹, 等. CBN含量对PCBN车刀切削性能影响的模拟与实验研究 [J]. 矿冶工程,2021,41(3):134-137. doi: 10.3969/j.issn.0253-6099.2021.03.032

    ZOU Juan, CHENG Zhaonan, ZOU Qin, et al. Simulation and experimental study of the influence of CBN Content on the Cutting Performances of PCBN turning tool [J]. Mining and Metallurgical Engineering,2021,41(3):134-137. doi: 10.3969/j.issn.0253-6099.2021.03.032
    [7] 张燕, 夏志辉, 徐东鸣. PCBN刀具高速精密切削W-Ni-Fe合金的性能研究 [J]. 粉末冶金工业,2016,26(6):35-40.

    ZHANG Yan, XIA Zhihui, XU Dongming. Study on properties of W-Ni-Fe alloy for high speed precision cutting by PCBN tool [J]. Powder Metallurgy Industry,2016,26(6):35-40.
    [8] 孙韶锋, 孙熙钊. 高铬钢轧辊切削与PCBN刀具 [J]. 天津冶金,2021(4):44-47. doi: 10.3969/j.issn.1006-110X.2021.04.014

    SUN Shaofeng, SUN Xizhao. High chrome steel roller cutting with PCBN tool [J]. Tianjin Metallurgy,2021(4):44-47. doi: 10.3969/j.issn.1006-110X.2021.04.014
    [9] 崔金蒙, 孟德忠, 吴哲, 等. PCBN刀具切削性能和磨损机理研究综述 [J]. 金刚石与磨料磨具工程,2020,40(6):83-91.

    CUI Jinmeng, MENG Dezhong, WU Zhe, et al. Review on cutting performance and wear mechanism of PCBN tools [J]. Diamond & Abrasives Engineering,2020,40(6):83-91.
    [10] 魏文静, 沈浩. PCBN刀具断续车削Cr12MoV钢表面粗糙度的试验研究 [J]. 机械科学与技术,2014,33(10):1514-1517.

    WEI Wenjing, SHEN Hao. Study on surface roughness experiment in interrupted turning of hardened tool steel Cr12MoV with PCBN cutting tools [J]. Mechanical Science and Technology for Aerospace Engineering,2014,33(10):1514-1517.
    [11] 高妮萍. 高速硬车20CrMnTi刀具耐用度研究 [J]. 机械设计与制造工程,2021,50(2):97-100. doi: 10.3969/j.issn.2095-509X.2021.02.021

    GAO Niping. Research on tool durability of high speed hard turning 20CrMnTi [J]. Machine Design and Manufacturing Engineering,2021,50(2):97-100. doi: 10.3969/j.issn.2095-509X.2021.02.021
    [12] FIORINI P, BYRNE G. The influence of built-up layer formation on cutting performance of GG25 grey cast iron [J]. CIRP Annals,2016,65(1):93-96. doi: 10.1016/j.cirp.2016.04.045
    [13] GUTNICHENKO O, BUSHLYA V, ZHOU J, et al. Tool wear and machining dynamics when turning high chromium white cast iron with pcBN tools [J]. Wear,2017,390:253-269.
    [14] ZHANG L L, LIN F, LV Z, et al. CBN-Al-HfC composites sintering behaviors and mechanical properties under high pressure [J]. International Journal of Refractory Metals & Hard Materials,2015,50:221-226.
    [15] MO P C, CHEN C, CHEN J R, et al. Effect of sintering temperature on synthesis of PCBN in CBN-Ti-Al-W system [J]. Diamond and Related Materials,2020,103:107714. doi: 10.1016/j.diamond.2020.107714
    [16] 罗涛, 江文清, 徐敏. TiN-Al体系结合剂配比对聚晶立方氮化硼复合材料性能的影响 [J]. 机械工程材料,2021,45(11):34-37. doi: 10.11973/jxgccl202111007

    LUO Tao, JIANG Wenqing, XU Min. Effect of TiN-Al system binder ratio on properties of polycrystalline cubic nitride composite [J]. Materials for Mechanical Engineering,2021,45(11):34-37. doi: 10.11973/jxgccl202111007
    [17] 邓福铭, 贺雪花, 邓雯丽, 等. 不同TiN含量整体式PCBN复合材料微观组织及性能研究 [J]. 金刚石与磨料磨具工程,2019,39(5):39-43.

    DENG Fuming, HE Xuehua, DENG Wenli, et al. Microstructure and properties of solid PCBN composites with different TiN contents [J]. Diamond & Abrasives Engineering,2019,39(5):39-43.
    [18] YUAN Y, CHENG X, CHANG R, et al. Reactive sintering CBN-Ti-Al composites by spark plasma sintering [J]. Diamond and Related Materials,2016,69:138-143. doi: 10.1016/j.diamond.2016.08.009
    [19] MO P C, CHEN C, CHEN C, et al. Effect of temperature on sintering of PCBN with Ti, Si3N4, AlN, Y2O3 additives [J]. Journal of Superhard Materials,2021,43:166-174. doi: 10.3103/S1063457621030084
    [20] HOTTA M, GOTO T. Densification and microstructure of Al2O3-CBN composites prepared by spark plasma sintering [J]. Journal of the Ceramic Society of Japan,2008,116(6):744-748.
    [21] KLIMCZYK P, CURA M, VLAICU A M. et al. Al2O3-CBN composites sintered by SPS and HPHT methods [J]. Journal of the European Ceramic Society,2016,36(7):1783-1789. doi: 10.1016/j.jeurceramsoc.2016.01.027
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  99
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-07-26
  • 刊出日期:  2023-01-12

目录

    /

    返回文章
    返回