CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磨粒有序化砂轮磨削微沟槽减阻表面的研究

王俊博 吕玉山 慕丽 李兴山

王俊博, 吕玉山, 慕丽, 李兴山. 磨粒有序化砂轮磨削微沟槽减阻表面的研究[J]. 金刚石与磨料磨具工程, 2022, 42(6): 738-744. doi: 10.13394/j.cnki.jgszz.2022.0031
引用本文: 王俊博, 吕玉山, 慕丽, 李兴山. 磨粒有序化砂轮磨削微沟槽减阻表面的研究[J]. 金刚石与磨料磨具工程, 2022, 42(6): 738-744. doi: 10.13394/j.cnki.jgszz.2022.0031
WANG Junbo, LYU Yushan, MU Li, LI Xingshan. Effect of abrasive pattern on grinding micro-groove drag-reduction surface[J]. Diamond & Abrasives Engineering, 2022, 42(6): 738-744. doi: 10.13394/j.cnki.jgszz.2022.0031
Citation: WANG Junbo, LYU Yushan, MU Li, LI Xingshan. Effect of abrasive pattern on grinding micro-groove drag-reduction surface[J]. Diamond & Abrasives Engineering, 2022, 42(6): 738-744. doi: 10.13394/j.cnki.jgszz.2022.0031

磨粒有序化砂轮磨削微沟槽减阻表面的研究

doi: 10.13394/j.cnki.jgszz.2022.0031
基金项目: 国家自然科学基金(51875368)
详细信息
    通讯作者:

    吕玉山,男,1961年10月出生,辽宁本溪人,教授,研究方向:磨削与抛光,仿生技术。 E-mail: 378856743@qq.com

  • 中图分类号: TG74;TG58

Effect of abrasive pattern on grinding micro-groove drag-reduction surface

  • 摘要: 为研究砂轮磨粒排布样式对磨削结构化沟槽表面的影响,使用叶序、错位和阵列3种磨粒有序化排布的砂轮磨削工件平面。首先,建立3种有序化排布的数学模型;其次,根据结构化沟槽表面减阻的特性参数,设计砂轮磨削参数,并使用MATLAB软件进行磨削运动仿真,将仿真结果与理论计算值进行比较;最后,使用磨削试验验证数学模型与仿真结果的可靠性。结果表明:3种磨粒排布有序化的砂轮均能磨削出微沟槽表面,此时相邻两行磨粒的轴向间距分别为0.04 mm(叶序排布)、0.40 mm(错位排布)和0.80 mm(阵列排布),对应的磨削深度均为0.050 0 mm;磨粒阵列和错位排布的砂轮磨削出的沟槽表面更加稳定,但沟槽的参数比未能达到0.200~1.000的要求;磨粒叶序排布的砂轮加工出的沟槽,能满足表面减阻特性的要求。

     

  • 图  1  3种磨粒排布示意图

    Figure  1.  Schematic diagram of three abrasive arrangements

    图  2  磨削示意图

    Figure  2.  Schematic diagram of grinding

    图  3  阵列排布

    Figure  3.  Array arrangement

    图  4  叶序和错位排布沟槽示意图

    Figure  4.  Arrangements of phyllotactic and staggered

    图  5  沟槽干涉形成示意图

    Figure  5.  Schematic diagram of groove interference formation

    图  6  沟槽表面仿真图

    Figure  6.  Simulation of groove surface

    图  7  有序化砂轮

    Figure  7.  Ordered grinding wheel

    图  8  磨削出的沟槽表面

    Figure  8.  Groove surface by grinding

    图  9  沟槽表面截面轮廓图

    Figure  9.  Groove surface section profile

  • [1] WALSH M J. Riblets as a viscous drag reduction technique [J]. Aiaa Journal,1983,21(4):485-486. doi: 10.2514/3.60126
    [2] 李强, 刘清磊, 杜玉晶, 等. 织构化表面优化设计及应用的研究进展 [J]. 中国表面工程,2021,34(6):59-73. doi: 10.11933/j.issn.1007-9289.20210608003

    LI Qiang, LIU Qinglei, DU Yujing, et al. Advances in optimization design and application of textured surfaces [J]. China Surface Engineering,2021,34(6):59-73. doi: 10.11933/j.issn.1007-9289.20210608003
    [3] STEPIEN P. Mechanism of grinding wheel surface reproduction in regular surface texture generation [J]. Surface Engineering,2008,24(3):219-225. doi: 10.1179/174329408X282596
    [4] STEPIEN P. Regular surface texture generated by special grinding process [J]. Journal of Manufacturing Science and Engineering,2009,131(1):123-136.
    [5] STEPIEN P. Deterministic and stochastic components of regular surface texture generated by a special grinding process [J]. Wear,2010,271(34):514-518.
    [6] DENKENA B, LEON L, WANG B. Grinding of microstructured functional surfaces: A novel strategy for dressing of microprofiles [J]. Production Engineering,2009,3(1):41-48. doi: 10.1007/s11740-008-0134-0
    [7] DENKENA B, KöHLER J, WANG B. Manufacturing of functional riblet structures by profile grinding [J]. CIRP Journal of Manufacturing Science and Technology,2010,3(1):14-26. doi: 10.1016/j.cirpj.2010.08.001
    [8] KIM H, KO T J. Verification of simulation of surface texturing on planar surface by grinding [J]. International Journal of Precision Engineering and Manufacturing,2015,16(2):225-231. doi: 10.1007/s12541-015-0030-4
    [9] MOHAMED A O, WARKENTIN A, BAUER R. Prediction of workpiece surface texture using circumferentially grooved grinding wheels [J]. The International Journal of Advanced Manufacturing Technology,2017,89(1/2/3/4):1149-1160.
    [10] GUO B, ZHAO Q. Ultrasonic vibration assisted grinding of hard and brittle linear micro-structured surfaces [J]. Precision Engineering,2016,48:98-106.
    [11] XIE J, ZHUO Y W, TAN T W. Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel [J]. Precision Engineering,2010,35(1):173-182.
    [12] 谢晋, 谭廷武, 郑佳华, 等. 金刚石砂轮V形尖端的数控对磨微细修整技术 [J]. 金刚石与磨料磨具工程,2010,30(5):1-5 , 10.

    XIE Jin, TAN Yanwu, ZHENG Jiahua, et al. CNC mutual-wear micro truing technique of diamond wheel V-tip [J]. Diamond and Abrasives Engineering,2010,30(5):1-5 , 10.
    [13] AURICH J C, BRAUN O, WARNECKE G, et al. Development of a superabrasive grinding wheel with defined grain structure using kinematic simulation [J]. Cirp Annals Manufacturing Technology,2003,52(1):275-280. doi: 10.1016/S0007-8506(07)60583-6
    [14] SILVA E J, KIRSCH B, BOTTENE A C, et al. Manufacturing of structured surfaces via grinding [J]. Journal of Materials Processing Technology,2017,243:170-183. doi: 10.1016/j.jmatprotec.2016.12.009
    [15] 陶思远, 吕玉山, 汪宇晨, 等. 叶序排布砂轮磨削微结构化表面的仿真研究 [J]. 组合机床与自动化加工技术,2020(9):130-133, 138.

    TAO Siyuan, LYU Yushan, WANG Yuchen, et al. Simulation study on grinding microstructured surface by the grinding wheels with abrasive phyllotactic pattern [J]. Modular Machine Tool and Automatic Manufacturing Technique,2020(9):130-133, 138.
    [16] BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry [J]. Journal of Fluid Mechanics,1997,338:59-87. doi: 10.1017/S0022112096004673
    [17] HIRT G, THOME M. Rolling of functional metallic surface structures [J]. CIRP Annals-Manufacturing Technology,2008,57(1):317-320. doi: 10.1016/j.cirp.2008.03.034
    [18] 肖贵坚, 贺毅, 黄云, 等. 基于单颗粒模型的航发叶片砂带磨削微观仿生锯齿状表面形成及实验 [J]. 航空学报,2020,41(7):33-42.

    XIAO GuiJian, HE Yi, HUANG Yun, et al. Single particle removal model and experimental study on micro bionic zigzag surface of aeronautical blade using belt grinding [J]. Acta Aeronautica et Astronautica Sincia,2020,41(7):33-42.
    [19] SHI Z, MALKIN S. Wear of electroplated CBN grinding wheels [J]. Journal of Manufacturing Science and Engineering,2006,128(1):110-118. doi: 10.1115/1.2122987
    [20] 李兴山, 熊伟, 陈天宇, 等. 磨粒簇叶序排布砂轮外圆磨削凹坑结构化减阻表面的仿真 [J]. 机械设计与制造,2021(3):261-265. doi: 10.3969/j.issn.1001-3997.2021.03.059

    LI Xingshan, XIONG Wei, CHEN Tianyu, et al. Simulation study on the grinding of cylindrical structured surface by the grinding wheel with phyllotactic abrasive cluster machinery [J]. Design and Manufacture,2021(3):261-265. doi: 10.3969/j.issn.1001-3997.2021.03.059
  • 加载中
图(9)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  108
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-06-27
  • 刊出日期:  2023-01-12

目录

    /

    返回文章
    返回