CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化硅晶体电化学机械抛光工艺研究

王磊 吴润泽 牛林 安志博 金洙吉

王磊, 吴润泽, 牛林, 安志博, 金洙吉. 碳化硅晶体电化学机械抛光工艺研究[J]. 金刚石与磨料磨具工程, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029
引用本文: 王磊, 吴润泽, 牛林, 安志博, 金洙吉. 碳化硅晶体电化学机械抛光工艺研究[J]. 金刚石与磨料磨具工程, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029
WANG Lei, WU Runze, NIU Lin, AN Zhibo, JIN Zhuji. Study on electrochemical mechanical polishing process of silicon carbide crystal[J]. Diamond & Abrasives Engineering, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029
Citation: WANG Lei, WU Runze, NIU Lin, AN Zhibo, JIN Zhuji. Study on electrochemical mechanical polishing process of silicon carbide crystal[J]. Diamond & Abrasives Engineering, 2022, 42(4): 504-510. doi: 10.13394/j.cnki.jgszz.2022.0029

碳化硅晶体电化学机械抛光工艺研究

doi: 10.13394/j.cnki.jgszz.2022.0029
详细信息
    通讯作者:

    金洙吉,男,1967年生,教授、博士生导师。主要研究方向:精密与超精密加工技术,特种加工及其控制技术,难加工材料高效加工。E-mail:kimsg@dlut.edu.cn

  • 中图分类号: TG58; TH162+.1

Study on electrochemical mechanical polishing process of silicon carbide crystal

Funds: JIA Zhijun, MA Hongyun, WU Xuran, et al. Fundamentals of Electrochemistry (Ⅴ): Electrode Process Kinetics and Charge Transfer Process [J]. Energy Storage Science and Technology. 2013, 2(04): 402-409.
  • 摘要: 针对碳化硅晶体抛光效率低的问题,研究碳化硅晶体的电化学机械抛光工艺,对比NaOH、NaNO3、H3PO4 3种电解液电化学氧化碳化硅晶体的效果。选用0.6 mol/L的NaNO3作为电化学机械抛光过程的电解液,使用金刚石–氧化铝混合磨粒,通过正交试验研究载荷、转速、电压、磨粒粒径对电化学机械抛光碳化硅晶体的表面质量和材料去除率的影响。采用优选的试验参数进行抛光试验,结果表明:在粗抛阶段可实现20.259 μm/h的高效材料去除,在精密抛光阶段可获得碳化硅表面粗糙度Sa为0.408 nm的光滑表面。

     

  • 图  1  电化学机械抛光装置

    Figure  1.  Electrochemical mechanical polishing device

    图  2  混合磨粒抛光SiC示意图

    Figure  2.  Mechanism of polishing silicon carbide with mixed abrasive particles

    图  3  不同电解液中阳极氧化后的碳化硅表面形貌与元素成分

    Figure  3.  Surface morphology and elemental composition of silicon carbide after anodization in different electrolytes

    图  4  不同电解液氧化后SiC的XPS分析

    Figure  4.  XPS analysis of SiC modified with different electrolytes

    图  5  碳化硅在不同浓度NaNO3电解液中的极化曲线

    Figure  5.  Polarization curves of silicon carbide in different concentrations of NaNO3 electrolyte

    图  6  各因素对材料去除率与表面粗糙度的影响占比

    Figure  6.  Influence ratio of each factor on the material removal rate and surface roughness

    图  7  碳化硅晶体表面电化学机械粗抛光结果

    Figure  7.  Electrochemical mechanical rough polishing result of SiC surface

    图  8  碳化硅晶体表面电化学机械精抛光结果

    Figure  8.  Electrochemical mechanical precision finishing result of SiC surface

    表  1  正交试验参数表

    Table  1.   Orthogonal experiment parameter table

    水平 A
    电压
    U / V
    B
    载荷
    F / N
    C
    转速
    ω / (r·min−1)
    D
    磨粒组合
    1 5 10 20
    2 10 20 30
    3 15 30 40
    4 20 40 50
    下载: 导出CSV

    表  2  正交试验设计表

    Table  2.   Orthogonal experiment design table

    试验序号 A B C D
    1 5 10 20
    2 5 20 30
    3 5 30 40
    4 5 40 50
    5 10 10 30
    6 10 20 20
    7 10 30 50
    8 10 40 40
    9 15 10 40
    10 15 20 50
    11 15 30 20
    12 15 40 30
    13 20 10 50
    14 20 20 40
    15 20 30 30
    16 20 40 20
    下载: 导出CSV

    表  3  综合评分结果

    Table  3.   Comprehensive scoring results

    试验
    序号
    材料去除率
    dMRR / (μm·h−1
    粗糙度
    Sa / nm
    材料去除率
    得分Y1
    表面粗糙度
    得分Y2
    10.6660.868090
    21.4190.7731090
    39.4050.6165090
    412.6301.9116060
    58.8661.1074080
    613.0862.8497040
    75.5621.4173070
    83.3120.9022080
    919.8483.46810020
    106.3660.7403090
    111.9620.7971090
    120.9121.425080
    131.7390.46210100
    141.8601.4621070
    1516.6222.0318060
    166.1210.8473090
    下载: 导出CSV

    表  4  粗抛阶段极差分析结果

    Table  4.   Range analysis results during rough polishing

    因素 A B C D
    K1 162 178 150 94
    K2 182 154 166 112
    K3 168 198 196 190
    K4 168 150 168 284
    k1 40.5 44.5 37.5 23.5
    k2 45.5 38.5 41.5 28.0
    k3 42.0 49.5 49.0 47.5
    k4 42.0 37.5 42.0 71.0
    极差R 5.0 12.0 11.5 47.5
    主次顺序 4 2 3 1
    最优水平 2 3 3 4
    最优组合 A2B3C3D4
    下载: 导出CSV

    表  5  精抛阶段极差分析结果

    Table  5.   Range analysis results during precision polishing

    因素 A B C D
    K1 309 276 290 283
    K2 259 273 292 330
    K3 266 296 252 329
    K4 301 290 301 193
    k1 77.25 69.00 72.50 70.75
    k2 64.75 68.25 73.00 82.50
    k3 66.50 74.00 63.00 82.25
    k4 75.25 72.50 75.25 48.25
    极差R 12.50 5.75 12.25 34.25
    主次顺序 2 4 3 1
    最优水平 1 3 4 2
    最优组合 A1B3C4D2
    下载: 导出CSV
  • [1] 王守国, 张岩. SiC材料及器件的应用发展前景 [J]. 自然杂志, 2011, 33(1): 42-45, 53.

    WANG Shouguo, ZHANG Yan. Application and development prospects of SiC materials and devices [J]. Chinese Journal of Nature, 2011, 33(1): 42-45, 53.
    [2] 何艳. 光催化辅助抛光碳化硅晶片工艺及机理研究 [D]. 沈阳: 沈阳工业大学, 2019.

    HE Yan. Research on the process and mechanism of photocatalytic assisted polishing of silicon carbide wafers [D]. Shenyang: Shenyang University of Technology, 2019
    [3] CHEN G M, NI Z F, XU L J, et al. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates [J]. Applied Surface Science, 2015, 359: 664-668.
    [4] 章平, 陈国美, 倪自丰等. 基于光助芬顿反应的碳化硅化学机械抛光工艺优化 [J]. 表面技术, 2022, 51(7): 253-262.

    ZHANG Ping, CHEN Guomei, NI Zifeng, et al. Optimization of chemical mechanical polishing of silicon carbide based on photo-assisted Fenton reaction [J]. Surface Technology, 2022, 51(7): 253-262.
    [5] ZHOU Y, PAN G S, SHI X L, et al. Chemical mechanical planarization (CMP) of on-axis Si-face SiC wafer using catalyst nanoparticles in slurry [J]. Surface and Coatings Technology, 2014, 251: 48-55.
    [6] LEE H S, KIM D I, AN J H, et al. Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS) [J]. CIRP Annals-Manufacturing Technology, 2010, 59(1): 333-336.
    [7] YANG X, OHKUBO Y, ENDO K, et al. AFM observation of initial oxidation stage of 4H-SiC (0001) in electrochemical mechanical polishing [J]. Procedia CIRP, 2018, 68: 735-740.
    [8] YANG X, YANG X Z, KAWAI K, et al. Highly efficient planarization of sliced 4H-SiC (0001) wafer by slurryless electrochemical mechanical polishing [J]. International Journal of Machine Tools and Manufacture, 2019, 144: 103431.
    [9] YANG X, YANG X, SUN R Y, et al. Obtaining atomically smooth 4H-SiC (0001) surface by controlling balance between anodizing and polishing in electrochemical mechanical polishing [J]. Nanomanufacturing and Metrology, 2019, 2(3): 140-147.
    [10] DENG H, HOSOYA K, IMANISHI Y, et al. Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry [J]. Electrochemistry Communications, 2015, 52: 5-8.
    [11] 周密愉. 铜和碳化硅电化学机械抛光工艺方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHOU Miyu. Research on electrochemical mechanical polishing process of copper and silicon carbide [D]. Harbin: Harbin Institute of Technology, 2019.
    [12] 倪自丰, 陈国美, 徐来军, 等. 不同氧化剂对6H-SiC化学机械抛光的影响 [J]. 机械工程学报, 2018, 54(19): 224-231.

    NI Zifeng, CHEN Guomei, XU Laijun, et al. Effects of different oxidizers on chemical mechanical polishing of 6H-SiC [J]. Chinese Journal of Mechanical Engineering, 2018, 54(19): 224-231.
    [13] 林美凤. 铝与酸、碱反应的实验探索及理论研究 [J]. 化学教育, 2001(12): 35-36.

    LIN Meifeng. Experimental exploration and theoretical research on the reaction of aluminum with acid and base [J]. Chemistry Education, 2001(12): 35-36.
    [14] 张富林. 高铬不锈钢电化学自催化预处理及切削加工性研究 [D]. 大连: 大连理工大学, 2021.

    ZHANG Fulin. Electrochemical autocatalytic pretreatment and machinability of high chromium stainless steel [D]. Dalian: Dalian University of Technology, 2021.
    [15] 贾志军, 马洪运, 吴旭冉, 等. 电化学基础(Ⅴ)——电极过程动力学及电荷传递过程 [J]. 储能科学与技术, 2013, 2(4): 402-409.

    JIA Zhijun, MA Hongyun, WU Xuran, et al. Fundamentals of electrochemistry (Ⅴ)—Electrochemical kinetic and charge–transfer process for electrochemical reaction [J]. Energy Storage Science and Technology, 2013, 2(4): 402-409.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  1297
  • HTML全文浏览量:  1100
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-04-13
  • 录用日期:  2022-04-15
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2022-08-10

目录

    /

    返回文章
    返回