CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石–SiC/Al复合材料的构型设计与导热性能

康惠元 康翱龙 焦增凯 王熹 周科朝 马莉 邓泽军 王一佳 余志明 魏秋平

康惠元, 康翱龙, 焦增凯, 王熹, 周科朝, 马莉, 邓泽军, 王一佳, 余志明, 魏秋平. 金刚石–SiC/Al复合材料的构型设计与导热性能[J]. 金刚石与磨料磨具工程, 2022, 42(5): 527-534. doi: 10.13394/j.cnki.jgszz.2022.0015
引用本文: 康惠元, 康翱龙, 焦增凯, 王熹, 周科朝, 马莉, 邓泽军, 王一佳, 余志明, 魏秋平. 金刚石–SiC/Al复合材料的构型设计与导热性能[J]. 金刚石与磨料磨具工程, 2022, 42(5): 527-534. doi: 10.13394/j.cnki.jgszz.2022.0015
KANG Huiyuan, KANG Aolong, JIAO Zengkai, WANG Xi, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Configuration design and thermal conductivity of diamond-SiC/Al composites[J]. Diamond & Abrasives Engineering, 2022, 42(5): 527-534. doi: 10.13394/j.cnki.jgszz.2022.0015
Citation: KANG Huiyuan, KANG Aolong, JIAO Zengkai, WANG Xi, ZHOU Kechao, MA Li, DENG Zejun, WANG Yijia, YU Zhiming, WEI Qiuping. Configuration design and thermal conductivity of diamond-SiC/Al composites[J]. Diamond & Abrasives Engineering, 2022, 42(5): 527-534. doi: 10.13394/j.cnki.jgszz.2022.0015

金刚石–SiC/Al复合材料的构型设计与导热性能

doi: 10.13394/j.cnki.jgszz.2022.0015
基金项目: 国家十四五重点研究发展计划(2021YFB3701800);国家自然科学基金(52071345,51874370,51601226);广东省十三五重点研究开发项目(2020B01085001);湖南省高新技术产业科技创新引领计划(2022GK4037,2022GK4047)。
详细信息
    通讯作者:

    魏秋平,男,1980年生,博士、教授。主要研究方向:薄膜材料和表面改性技术。E-mail:qiupwei@csu.edu.cn

  • 中图分类号: TQ164; TB333

Configuration design and thermal conductivity of diamond-SiC/Al composites

  • 摘要: 以SiC和镀钨金刚石增强体为原料制备预制体,通过气压浸渗技术在800 ℃,5 MPa条件下制备金刚石–SiC/Al复合材料。利用扫描电镜、红外热成像仪、激光导热仪等对复合材料性能进行分析,研究SiC和金刚石的含量与粒径比对复合材料构型的影响,从而优化复合材料导热性能。结果表明:在相同的SiC粒径下,金刚石体积分数的增加将使复合材料的导热性能明显提升。当金刚石体积分数为30%时,含F100 SiC的复合材料导热性能最佳,其热导率为344 W/(m∙K)。当金刚石体积分数相同,粒径比从0.07增大到0.65时,复合材料导热性能依次提升;且在金刚石体积分数为15%时,复合材料的热导率增幅最大,从174 W/(m∙K)增大到274 W/(m∙K),增长了57%。通过改善金刚石–SiC/Al复合材料中增强体的含量和粒径比可以调控复合材料构型,充分发挥复合材料的导热潜力。

     

  • 图  1  复合材料的XRD图谱

    Figure  1.  XRD patterns of composites

    图  2  金刚石–SiC/Al复合材料的表面形貌

    Figure  2.  Surface topographies of diamond-SiC/Al composite

    图  3  金刚石–SiC/Al复合材料的断口形貌及元素分布

    Figure  3.  Fracture morphologies and element distributions of diamond-SiC/Al composite

    图  4  金刚石–SiC/Al复合材料的红外热成像图

    Figure  4.  Infrared thermal images of diamond-SiC/Al composites

    图  5  S1~S3样品的平均温度随时间的变化

    Figure  5.  Variation of average temperatures of S1~S3 sample with times

    图  6  金刚石–SiC/Al复合材料的热导率

    Figure  6.  Thermal conductivity of diamond-SiC/Al composites

    图  7  不同粒径的复合材料的红外热成像图

    Figure  7.  Infrared thermographic of composite materials with different particle sizes

    图  8  S3,S6,S9样品的表面平均温度随时间的变化

    Figure  8.  Variation of average surface temperatures of S3, S6 and S9 samples with times

    图  9  不同粒径比的复合材料热导率

    Figure  9.  Thermal conductivities of composites with different particle size ratios

    表  1  复合材料中增强体粒径及体积分数

    Table  1.   Reinforcement particle sizes and volume fractions in composites

    样品
    编号
    金刚石体积分数

    φ1 / %
    SiC体积分数

    φ2 / %
    SiC颗粒粒径

    d0 / μm
    SiC粒度
    代号
    S1077150F100
    S21562150F100
    S33047150F100
    S407758F200
    S5156258F200
    S6304758F200
    S707717F500
    S8156217F500
    S9304717F500
    下载: 导出CSV
  • [1] 林宁, 李伟青, 康嘉杰, 等. 高导热涂层制备及其性能研究进展 [J]. 表面技术,2021,50(6):128-137. doi: 10.16490/j.cnki.issn.1001-3660.2021.06.013

    LIN ning, LI Weiqing, KANG Jiajie, et al. Research progress of preparation and performance of high thermal conductivity coatings [J]. Surface Technology,2021,50(6):128-137. doi: 10.16490/j.cnki.issn.1001-3660.2021.06.013
    [2] MORRE G. Cramming more components onto integrated circuits [J]. Electronics,1965,38:114-117.
    [3] ZHANG P, YUAN P, JIANG X, et al. A theoretical review on interfacial thermal transport at the nanoscale [J]. Small,2018,14(2):19.
    [4] WALDROP M. The chips are down for Moore's law [J]. Nature,2016,530(7589):144-147. doi: 10.1038/530144a
    [5] EDWARDS C. Moore's law: What comes next? [J]. Communications of the Acm,2021,64(2):12-14. doi: 10.1145/3440992
    [6] GRIER D. Forgetting Moore's law [J]. Computer,2021,54(6):46-48. doi: 10.1109/MC.2021.3070241
    [7] XU B, HU S, HUNG S, et al. Weaker bonding can give larger thermal conductance at highly mismatched interfaces [J]. Science Advances,2021,7(17):7.
    [8] HOHENSEE G, WILSON R, CAHILL D. Thermal conductance of metal-diamond interfaces at high pressure [J]. Nature Communications,2015,6:9.
    [9] CHA S, KIM K, ARSHAD S, et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing [J]. Advanced Materials,2005,17(11):1377. doi: 10.1002/adma.200401933
    [10] 马如龙, 彭超群, 王日初, 等. 电子封装用diamond/Al复合材料研究进展 [J]. 中国有色金属学报,2014,24(3):689-699.

    MA Rulong, PENG Chaoqun, WANG Richu, et al. Research progress of diamond/aluminum composites for electronic packaging [J]. The Chinese Journal of Nonferrous metals,2014,24(3):689-699.
    [11] 胡海亭, 胡明, 孟君晟. 热压对喷涂SiCp/Al复合材料组织和热性能的影响 [J]. 表面技术,2009,38(5):6-8. doi: 10.3969/j.issn.1001-3660.2009.05.003

    HU Haiting, HU Ming, MENG Junsheng. Effects of hot pressed treatment on microstructures and thermal properties of spraying SiCp/Al composites [J]. Surface Technology,2009,38(5):6-8. doi: 10.3969/j.issn.1001-3660.2009.05.003
    [12] CHE Z, LI J, WANG Q, et al. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites [J]. Composites Part A: Applied Science and Manufacturing,2018,107:164-170. doi: 10.1016/j.compositesa.2018.01.002
    [13] WANG L, LI J, BAI G, et al. Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration [J]. Journal of Alloys and Compounds,2019,781:800-809. doi: 10.1016/j.jallcom.2018.12.053
    [14] YANG W, CHEN G, WAN P, et al. Enhanced thermal conductivity in diamond/aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method [J]. Journal of Alloys and Compounds,2017,726:623-631. doi: 10.1016/j.jallcom.2017.08.055
    [15] 张荻, 谭占秋, 熊定邦, 等. 热管理用金属基复合材料的应用现状及发展趋势 [J]. 中国材料进展,2018,37(12):994-1001.

    ZHANG Di, TAN Zhanqiu, XIONG Dingbang, et al. Application and prospect of matal matrix composites for thermal management: An overview [J]. Materials China,2018,37(12):994-1001.
    [16] XUE C, YU J, ZHU X. Thermal properties of diamond/SiC/Al composites with high volume fractions [J]. Materials & Design,2011,32(8/9):4225-4229.
    [17] GUO H, HAN Y, ZHANG X, et al. Microstructure and thermophysical properties of SiC/Al composites mixed with diamond [J]. Transactions of Nonferrous Metals Society of China,2015,25(1):170-174. doi: 10.1016/S1003-6326(15)63592-0
    [18] ZHANG L, WEI Q, AN J, et al. Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management [J]. Chemical Engineering Journal,2020,380:9.
    [19] YE W, WEI Q, ZHANG L, et al. Macroporous diamond foam: A novel design of 3D interconnected heat conduction network for thermal management [J]. Materials & Design,2018,156:32-41.
    [20] 安俊杰, 魏秋平, 叶文涛, 等. 泡沫铜表面改性对化学气相沉积高质量泡沫金刚石的影响 [J]. 表面技术,2020,49(3):97-105.

    AN Junjie, WEI Qiuping, YE Wentao, et al. High quality diamond films deposited on surface modified Cu foams by chemical vapor deposition method [J]. Surface Technology,2020,49(3):97-105.
    [21] MIZUUCHI K, INOUE K, AGARI Y, et al. Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al-matrix composite fabricated by SPS [J]. Microelectronics Reliability,2014,54(11):2463-2470. doi: 10.1016/j.microrel.2014.04.006
    [22] MAIORANO L, MOLINA J. Guiding heat in active thermal management: One-pot incorporation of interfacial nano-engineered aluminium/diamond composites into aluminium foams [J]. Composites Part A: Applied Science and Manufacturing,2020,133:12.
    [23] LEE H, JEON K, KIM H, et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications [J]. Journal of Materials Science,2000,35(24):6231-6236. doi: 10.1023/A:1026749831726
    [24] TAN Z, XIONG D, FAN G, et al. Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion [J]. Journal of Materials Science,2018,53(9):6602-6612. doi: 10.1007/s10853-018-2024-y
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  145
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-05-13
  • 刊出日期:  2022-10-16

目录

    /

    返回文章
    返回