CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加工参数对单晶γ-TiAl表面质量和亚表层损伤的影响机理

姜军强 梁桂强 孙立辉 董中奇

姜军强, 梁桂强, 孙立辉, 董中奇. 加工参数对单晶γ-TiAl表面质量和亚表层损伤的影响机理[J]. 金刚石与磨料磨具工程, 2022, 42(4): 457-466. doi: 10.13394/j.cnki.jgszz.2022.0001
引用本文: 姜军强, 梁桂强, 孙立辉, 董中奇. 加工参数对单晶γ-TiAl表面质量和亚表层损伤的影响机理[J]. 金刚石与磨料磨具工程, 2022, 42(4): 457-466. doi: 10.13394/j.cnki.jgszz.2022.0001
JIANG Junqiang, LIANG Guiqiang, SUN Lihui, DONG Zhongqi. Influence mechanism of machining parameters on surface quality and subsurface damage of single crystal γ-TiAl[J]. Diamond &Abrasives Engineering, 2022, 42(4): 457-466. doi: 10.13394/j.cnki.jgszz.2022.0001
Citation: JIANG Junqiang, LIANG Guiqiang, SUN Lihui, DONG Zhongqi. Influence mechanism of machining parameters on surface quality and subsurface damage of single crystal γ-TiAl[J]. Diamond &Abrasives Engineering, 2022, 42(4): 457-466. doi: 10.13394/j.cnki.jgszz.2022.0001

加工参数对单晶γ-TiAl表面质量和亚表层损伤的影响机理

doi: 10.13394/j.cnki.jgszz.2022.0001
基金项目: 河北省重点研发计划(20311007D)。
详细信息
    作者简介:

    姜军强,男,1990年生,博士研究生。主要研究方向:精密与超精密加工。E-mail:17101016004@stu.xust.edu.cn

    通讯作者:

    梁桂强,男,1976年生,博士、高级工程师、硕士生导师。主要研究方向:切削工艺仿真及产业化应用。E-mail:13910401904@163.com

  • 中图分类号: TG58;TG71;TQ164

Influence mechanism of machining parameters on surface quality and subsurface damage of single crystal γ-TiAl

  • 摘要: 为研究加工工艺参数对纳米切削单晶γ-TiAl合金表面质量和亚表层损伤的影响机理,以分子动力学(molecular dynamics, MD)为基础理论,采用非刚性金刚石刀具建立三维纳米切削模型,通过研究切屑体积、表面粗糙度、静水压分布、位错密度、位错演化、相变原子数,详细分析不同切削速度和切削深度对表面和亚表面结构的影响。结果发现:随着切削速度的增加,切屑体积增大,加工效率提升,且存在切削速度为100 m/s的临界值。表面粗糙度先减小后增大,同样存在切削速度为100 m/s的临界值。位错的复杂程度降低,位错密度减小,塑性变形程度增加;随着切削深度的增加,切屑体积增大,加工效率提升,表面粗糙度、位错密度以及塑性变形程度显著增加。在切削过程中,发现位错主要分布在刀具前方和下方,在刀具前方45°方向存在V形位错和梯杆位错以及位错间的相互反应,且切削完成后残留下空位和原子团簇等稳定缺陷。

     

  • 图  1  纳米切削γ-TiAl合金模型示意图

    Figure  1.  Schematic diagram of nano-cutting γ-TiAl alloy model

    图  2  切削速度对表面形貌的影响

    Figure  2.  Influence of cutting speeds on surface morphology

    图  3  切深对刀具前端切屑堆积的影响

    Figure  3.  Influence of cutting depths on chip accumulation at the front of the tool

    图  4  加工参数对表面粗糙度的影响

    Figure  4.  Influence of machining parameters on surface roughness

    图  5  不同切削速度和切深下的工件静水压分布状态

    Figure  5.  State of hydrostatic pressure distribution in the workpiece at different cutting speeds and cutting depths

    图  6  不同切削速度和切深下的工件内部的位错分布

    Figure  6.  Dislocation distribution in the workpiece at different cutting speeds and cutting depths

    图  7  切削加工中缺陷演化过程

    Figure  7.  Evolution of defects in the workpiece during cutting process

    表  1  纳米切削γ-TiAl合金模拟参数

    Table  1.   Simulation parameters for nanomachining of γ-TiAl

    加工条件取值
    前角 γ / (o10
    刃角半径 r / nm0.9
    后角 α /(o9
    切削速度 v / (m·s−150, 100, 150, 200
    切削深度 ap / nm0.5, 1.0, 1.5
    下载: 导出CSV
  • [1] 曹卉. 单晶γ-TiAl合金的变形与断裂机制研究 [D]. 兰州: 兰州理工大学, 2020.

    CAO Hui. Deformation and fracture mechanism of single crystal γ-TiAl [D]. Lanzhou: Lanzhou University of Technology, 2020.
    [2] HAN X, XU D D, AXINTE D, et al. On understanding the specific cutting mechanisms governing the workpiece surface integrity in metal matrix composites machining [J]. Journal of Materials Processing Technology,2021,288:116875. doi: 10.1016/j.jmatprotec.2020.116875
    [3] 李颂华, 韩光田, 孙健, 等. 金刚石砂轮磨削轴承用ZrO2陶瓷表面质量研究 [J]. 金刚石与磨料磨具工程,2019,39(6):75-81.

    LI Songhua, HAN Guangtian, SUN Jian, et al. Study on surface quality of zirconia ceramics used for bearing ground by diamond grinding wheel [J]. Diamond & Abrasives Engineering,2019,39(6):75-81.
    [4] HAN J J, HAO X Q, LI L, et al. Investigation on surface quality and burr generation of high aspect ratio (HAR) micro-milled grooves [J]. Journal of Manufacturing Processes,2020,52:35-43. doi: 10.1016/j.jmapro.2020.01.041
    [5] ANWAR S, AHMED N, PERVAIZ S, et al. On the turning of electron beam melted gamma-TiAl with coated and uncoated tools: A machinability analysis [J]. Journal of Materials Processing Technology,2020,282:116664. doi: 10.1016/j.jmatprotec.2020.116664
    [6] CHENG Y, YUAN Q, ZHANG B, et al. Study on turning force of γ-TiAl alloy [J]. International Journal of Advanced Manufacturing Technology,2019,105(5/6):2393-2402.
    [7] FAN Y H, WANG W Y, HAO Z P, et al. Work hardening mechanism based on molecular dynamics simulation in cutting Ni–Fe–Cr series of Ni-based alloy [J]. Journal of Alloys and Compounds,2020,819:153331. doi: 10.1016/j.jallcom.2019.153331
    [8] 夏斯伟, 周海, 徐晓明, 等. 单晶材料纳米加工的分子动力学模拟研究进展 [J]. 金刚石与磨料磨具工程,2018,38(5):78-86. doi: 10.13394/j.cnki.jgszz.2018.5.0015

    XIA Siwei, ZHOU Hai, XU Xiaoming, et al. Advances in molecular dynamics simulation of nano-manufacturing of monocrystalline materials [J]. Diamond & Abrasives Engineering,2018,38(5):78-86. doi: 10.13394/j.cnki.jgszz.2018.5.0015
    [9] LIU H T, ZHU X F, SUN Y Z, et al. Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals [J]. Applied Surface Science,2017,422(15):413-419.
    [10] GUO Y B, LIANG Y C. Atomistic simulation of thermal effects and defect structures during nanomachining of copper [J]. Transactions of Nonferrous Metals Society of China,2012,22(11):2762-2770. doi: 10.1016/S1003-6326(11)61530-6
    [11] SHIMADA S, IKAWA N, TANAKA H, et al. Structure of micromachined surface simulated by molecular dynamics analysis [J]. CIRP Annals-Manufacturing Technology,1994,43(1):51-54. doi: 10.1016/S0007-8506(07)62162-3
    [12] TO S, LEE W B, CHAN C Y. Ultraprecision diamond turning of aluminium single crystals [J]. Journal of Materials Processing Technology,1997,63(1/2/3):157-162. doi: 10.1016/S0924-0136(96)02617-9
    [13] REN J, LIANG G X, MING L V. Effect of different crystal orientations on the surface integrity during nanogrinding of monocrystalline nickel [J]. Modelling and Simulation in Materials Science and Engineering,2019,27(7):103855.
    [14] SWOPE W C, ANDERSEN H C, BERENS P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters [J]. Journal of Chemical Physics,1982,76(1):637-649. doi: 10.1063/1.442716
    [15] DAW M S, BASKES M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals [J]. Physical Review Letters,1983,50(17):1285-1288. doi: 10.1103/PhysRevLett.50.1285
    [16] DANDEKAR C R, SHIN Y C. Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics [J]. Composites Part A: Applied Science & Manufacturing,2011,42(4):355-363.
    [17] TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical Review B,1989,39(8):5566-5568. doi: 10.1103/PhysRevB.39.5566
    [18] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics,1995,117(1):1-19. doi: 10.1006/jcph.1995.1039
    [19] STUKOWSKI A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering,2010,18(1):2154-2162.
    [20] FANG Q H, WANG Q, LI J, et al. Mechanisms of subsurface damage and material removal during high speed grinding processes in Ni/Cu multilayers using a molecular dynamics study [J]. RSC Advances,2017,7(67):42047-42055. doi: 10.1039/C7RA06975H
    [21] LI J, FANG Q H, LIU Y W, et al. Scratching of copper with rough surfaces conducted by diamond tip simulated using molecular dynamics [J]. The International Journal of Advanced Manufacturing Technology,2015,77(5/6/7/8):1057-1070. doi: 10.1007/s00170-014-6536-6
    [22] TONIETTO L, GONZAGA L, VERONEZ M R, et al. New method for evaluating surface roughness parameters acquired by laser scanning [J]. Scientific Reports,2019,9(1):15038. doi: 10.1038/s41598-019-51545-7
    [23] 仇健, 巩亚东, 刘昌付, 等. 几种因素对快速点磨削表面粗糙度的影响 [J]. 金刚石与磨料磨具工程,2009,4:39-43. doi: 10.3969/j.issn.1006-852X.2009.04.008

    QIU Jian, GONG Yadong, LIU Changfu, et al. Effect of several factors on quick-point grinding surface roughness [J]. Diamond & Abrasives Engineering,2009,4:39-43. doi: 10.3969/j.issn.1006-852X.2009.04.008
    [24] LI Y, SHUAI M B, ZHANG J J, et al. Molecular dynamics investigation of residual stress and surface roughness of cerium under diamond cutting [J]. Micromachines,2018,9:386. doi: 10.3390/mi9080386
    [25] AL-AHMARI A, ASHFAQ M, ALFAIFY A, et al. Predicting surface quality of γ-TiAl produced by additive manufacturing process using response surface method [J]. Journal of Mechanical Science and Technology,2016,30(1):345-352. doi: 10.1007/s12206-015-1239-y
    [26] CAI M B, LI X P, RAHMAN M. Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation [J]. International Journal of Machine Tools & Manufacture,2007,47(1):75-80.
    [27] HOSSEINI S V, VAHDATI M. Modeling the effect of tool edge radius on contact zone in nanomachining [J]. Computational Materials Science,2012,65:29-36. doi: 10.1016/j.commatsci.2012.06.037
    [28] ZHU Z X, PENG B, FENG R C, et al. Molecular dynamics simulation of chip formation mechanism in single-crystal nickel nanomachining [J]. Science China Technological Sciences,2019,62(11):48-61.
    [29] 王全龙. 晶体铜纳米切削加工亚表层晶体结构及缺陷演变机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016.

    WANG Quanlong. Research on the evolution mechanism of subsurface defect and crystal structure of crystal copper in nanometric cutting process [D]. Harbin: Harbin Institute Technology, 2016.
    [30] 冯瑞成, 乔海洋, 朱宗孝, 等. 单晶γ-TiAl合金纳米切削过程的分子动力学模拟 [J]. 稀有金属材料与工程,2019,48(5):1559-1566.

    FENG Ruicheng, QIAO Haiyang, ZHU Zongxiao, et al. Molecular dynamics simulations of single crystal γ-TiAl alloy in nanometric cutting process [J]. Rare Metal Materials and Engineering,2019,48(5):1559-1566.
    [31] REN J, HAO M R, LV M, et al. Molecular dynamics research on ultra-high-speed grinding mechanism of monocrystalline nickel [J]. Applied Surface Science,2018,455(15):629-634.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  50
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 录用日期:  2022-04-19
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-04-09

目录

    /

    返回文章
    返回