CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多元纳米颗粒强化WC–青铜基金刚石钻头胎体材料

常思 刘宝昌 戴文昊 涅斯科罗姆尼赫·维亚切斯拉夫 佩特涅夫·帕维尔 波波娃·玛丽娜

常思, 刘宝昌, 戴文昊, 涅斯科罗姆尼赫·维亚切斯拉夫, 佩特涅夫·帕维尔, 波波娃·玛丽娜. 多元纳米颗粒强化WC–青铜基金刚石钻头胎体材料[J]. 金刚石与磨料磨具工程, 2022, 42(3): 317-324. doi: 10.13394/j.cnki.jgszz.2021.3003
引用本文: 常思, 刘宝昌, 戴文昊, 涅斯科罗姆尼赫·维亚切斯拉夫, 佩特涅夫·帕维尔, 波波娃·玛丽娜. 多元纳米颗粒强化WC–青铜基金刚石钻头胎体材料[J]. 金刚石与磨料磨具工程, 2022, 42(3): 317-324. doi: 10.13394/j.cnki.jgszz.2021.3003
CHANG Si, LIU Baochang, DAI Wenhao, NESKOROMNYKH Viacheslav, PETENEV Pavel, POPOVA Marina. Properties of WC-bronze based matrix material for diamond bit reinforced by multielement nanoparticles[J]. Diamond &Abrasives Engineering, 2022, 42(3): 317-324. doi: 10.13394/j.cnki.jgszz.2021.3003
Citation: CHANG Si, LIU Baochang, DAI Wenhao, NESKOROMNYKH Viacheslav, PETENEV Pavel, POPOVA Marina. Properties of WC-bronze based matrix material for diamond bit reinforced by multielement nanoparticles[J]. Diamond &Abrasives Engineering, 2022, 42(3): 317-324. doi: 10.13394/j.cnki.jgszz.2021.3003

多元纳米颗粒强化WC–青铜基金刚石钻头胎体材料

doi: 10.13394/j.cnki.jgszz.2021.3003
详细信息
    作者简介:

    常思:

    通讯作者:

    刘宝昌,男,1975年生,教授、博士生导师。主要研究方向:钻探用超硬复合材料及钻头等。E-mail:liubc@jlu.edu.cn

  • 中图分类号: TG74

Properties of WC-bronze based matrix material for diamond bit reinforced by multielement nanoparticles

  • 摘要: 为提高孕镶金刚石钻头胎体性能,使其更好地满足钻探需求,向WC–青铜基胎体材料中加入纳米NbC和纳米WC颗粒,研究其对胎体力学性能、微观结构的影响。利用配方均匀设计法、回归分析和规划求解得到纳米颗粒的最优添加量,并烧制钻头开展室内钻进试验。结果表明:加入纳米NbC和纳米WC后,WC–青铜基胎体材料的硬度和抗弯强度最高提高25.23%和5.73%;含金刚石的胎体材料的耐磨性明显增强,其磨耗比最高升高57.4%;金刚石与胎体之间结合得更加紧密。纳米颗粒强化后的孕镶金刚石钻头的机械钻速提高19.63%,单位进尺工作层消耗减少32.84%,说明纳米颗粒能强化孕镶金刚石钻头,提高其钻进效率,并延长钻头寿命。

     

  • 图  1  磨耗比试验示意图

    Figure  1.  Schematic diagram of wear ratio test

    图  2  含金刚石的胎体材料试样的机械性能

    Figure  2.  Mechanical properties of the diamond containing composite samples

    图  3  试样的XRD测试结果

    Figure  3.  XRD test results of the sample

    图  4  含金刚石的胎体材料试样的断口形貌

    Figure  4.  Fracture morphology of diamond containing composite samples

    表  1  原始胎体配方成分

    Table  1.   Compositions of initial matrix

    组分质量分数 ω / %
    WC 55
    锡青铜 35
    Ni 5
    Mn 5
    下载: 导出CSV

    表  2  纳米颗粒参数

    Table  2.   Nanoparticle parameters

    名称平均粒径 d / nm纯度
    ω0 / %
    密度 ρ / (g·cm−3)颜色
    纳米NbC80>99.97.6黑褐色
    纳米WC80>99.915.5黑色 
    下载: 导出CSV

    表  3  有约束的配方均匀设计

    Table  3.   Limited formula uniform design

    编号16c1c2$ {c}_{1}^{\mathrm{*}} $$ {c}_{2}^{\mathrm{*}} $
    1170.050.650.9040.976
    2230.150.250.9080.971
    33100.250.950.9120.979
    4460.350.550.9160.975
    5520.450.150.9200.970
    6690.550.850.9240.978
    7750.650.450.9270.973
    8810.750.050.9310.969
    9980.850.750.9350.977
    101040.950.350.9390.972
    下载: 导出CSV

    表  4  胎体配方

    Table  4.   Matrix formula

    编号x1 / %x2 / %x3 / %
    14.52.093.5
    24.32.493.3
    34.12.893.1
    43.92.194.0
    53.72.693.7
    63.53.093.5
    下载: 导出CSV

    表  5  胎体试样的名称、成分

    Table  5.   Name and composition of matrix samples

    编号质量分数 ω1 / %
    纳米NbC纳米WC胎体
    S0 0 0 100.0
    S1 4.5 2.0 93.5
    S2 4.3 2.4 93.3
    S3 4.1 2.8 93.1
    S4 3.9 2.1
    94.0
    S5 3.7 2.6 93.7
    S6 3.5 3.0 93.5
    下载: 导出CSV

    表  6  胎体试样的机械性能

    Table  6.   Mechanical properties of matrix samples

    编号硬度 HRC抗弯强度 σ / MPa
    S030.04860.52
    S132.59758.59
    S234.56864.34
    S335.71909.87
    S435.50682.47
    S537.12742.43
    S637.62733.66
    下载: 导出CSV

    表  7  含金刚石的胎体材料试样名称、成分

    Table  7.   Name and composition of the matrix material sample containing diamond

    编号质量分数 ω2 / %
    纳米NbC纳米WC胎体
    SD000100.0
    SD13.02.095.0
    SD25.03.092.0
    下载: 导出CSV

    表  8  钻头结构参数

    Table  8.   Structural parameters of bits

    名称 数值
    外径 D1 / mm 60.0
    内径 D2 / mm 41.5
    工作层高 h1 / mm 6.0
    非工作层高 h2 / mm 6.0
    水口高 h3 / mm 8.0
    水口宽 b1 /mm 6.0
    水口数 n 6
    下载: 导出CSV

    表  9  钻进试验数据表

    Table  9.   Drilling experiment data

    钻头类型钻进
    进尺
    l / mm
    钻进
    时间
    t / min
    机械
    钻速
    v / (mm·s−1)
    工作层
    磨损
    d / mm
    单位进尺
    工作层消耗
    d0 / (mm·m−1)
    传统钻头1 06010.821.630.500.472
    强化钻头1 20010.281.950.380.317
    下载: 导出CSV
  • [1] MOSTOFI M, RICHARD T, FRANCA L, et al. Wear response of impregnated diamond bits [J]. Wear,2018,410/411:34-42. doi: 10.1016/j.wear.2018.04.010
    [2] 蔡家品, 贾美玲, 沈立娜, 等. 难钻进地层金刚石钻头的现状和发展趋势 [J]. 探矿工程(岩土钻掘工程),2017,44(2):67-73.

    CAI Jiapin, JIA Meiling, SHEN Lina, et al. Present situation of diamond bit used in difficult drilling formations and the development trend [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2017,44(2):67-73.
    [3] BAI R, ZHANG S, HAN Y, et al. Effect of CL192 pre-alloyed powder on matrix properties of impregnated diamond bit [J]. Diamond & Related Materials,2020,107:107878.
    [4] LI C, DUAN L, TAN S, et al. Effect of CaF2 and hBN on the mechanical and tribological properties of Fe-based impregnated diamond bit matrix [J]. International Journal of Refractory Metals and Hard Materials,2018,75:118-125. doi: 10.1016/j.ijrmhm.2018.04.011
    [5] 叶宏煜, 谭松成, 杨展, 等. 强化热压烧结孕镶金刚石钻头试验研究 [J]. 超硬材料工程,2021,33(1):1-6. doi: 10.3969/j.issn.1673-1433.2021.01.001

    YE Hongyu, TAN Songcheng, YANG Zhan, et al. Experimental study on the impregnated diamond bit fabricated by intensive hot-press sintering [J]. Superhard Materials Engineering,2021,33(1):1-6. doi: 10.3969/j.issn.1673-1433.2021.01.001
    [6] 刘鑫, 张伟龙, 赵小军, 等. 热压工艺参数对WC–Cu基胎体力学性能的影响 [J]. 金刚石与磨料磨具工程,2020,40(4):34-40.

    LIU Xin, ZHANG Weilong, ZHAO Xiaojun, et al. Effect of hot pressing parameters on the mechanical properties of WC–Cu matrix [J]. Diamond & Abrasives Engineering,2020,40(4):34-40.
    [7] 章兼植. 有关胎体设计的一些评述 [J]. 珠宝科技,2003(4):11-14.

    ZHANG Jianzhi. Statements for matrix design [J]. Jewellery Science and Technology,2003(4):11-14.
    [8] 高玉彬, 陈洋. 钻进坚硬致密岩层的金刚石钻头试验研究 [J]. 超硬材料工程,2021,33(3):1-6. doi: 10.3969/j.issn.1673-1433.2021.03.001

    GAO Yubin, CHEN Yang. Experimental study of diamond bit for drilling hard and compact rock [J]. Superhard Materials Engineering,2021,33(3):1-6. doi: 10.3969/j.issn.1673-1433.2021.03.001
    [9] 吴燕平, 燕青芝. 金属结合剂金刚石工具研究进展 [J]. 金刚石与磨料磨具工程,2019,39(2):37-45.

    WU Yanping, YAN Qingzhi. Research progress of metal bond diamond tools [J]. Diamond & Abrasives Engineering,2019,39(2):37-45.
    [10] DUAN D Z, SUN L, FANG X D, et al. Microstructure and processing performance of brazed diamond drill bits with Ni–Cr+Cu–Ce composite solder [J]. Diamond and Related Materials,2019,93:216-223. doi: 10.1016/j.diamond.2019.01.023
    [11] 王晋春, 张烈华, 胡三德. 孕镶材料与岩石适应性研究 [J]. 化学工程与装备,2015(5):13-16.

    WANG Jinchun, ZHANG Liehua, HU Sande. Research on the adaptability of impregnated materials and rocks [J]. Chemical Engineering & Equipment,2015(5):13-16.
    [12] 王帅, 吕智, 林峰, 等. WC含量对金刚石钻头胎体性能的影响研究 [J]. 金刚石与磨料磨具工程,2014,34(6):16-21.

    WANG Shuai, LYU Zhi, LIN Feng, et al. Effect of WC content on the properties of impregnated diamond bit matrix [J]. Diamond & Abrasives Engineering,2014,34(6):16-21.
    [13] 黄帆, 肖冬顺, 瞿霞, 等. 基于混料设计的WC基复合胎体性能研究 [J]. 探矿工程(岩土钻掘工程),2019,46(1):89-92.

    HUANG Fan, XIAO Dongshun, QU Xia, et al. Properties of WC-based composite matrix by mixture design [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2019,46(1):89-92.
    [14] 宁新愿, 汪礼敏, 刘祥庆. 弥散强化金刚石工具胎体材料的研究进展 [J]. 粉末冶金工业,2015,25(1):49-53.

    NING Xinyuan, WANG Limin, LIU Xiangqing. Research progress of the dispersion strengthening diamond tool matrix [J]. Powder Metallurgy Industry,2015,25(1):49-53.
    [15] KUMAR S S, HIREMATH S S. Microstructure and mechanical behavior of nanoparticles reinforced metal matrix composites—A review [J]. Applied Mechanics and Materials,2014,592/593/594:939-944. doi: 10.4028/www.scientific.net/AMM.592-594.939
    [16] SUN Y, WU H, MENG L, et al. The effect of ZrO2 nanoparticles on the microstructure and properties of sintered WC-bronze-based diamond composites [J]. Materials,2016,9(5):343. doi: 10.3390/ma9050343
    [17] 高科, 徐小健, 谢晓波, 等. 纳米镍粉对孕镶金刚石切削工具胎体性能的影响 [J]. 探矿工程(岩土钻掘工程),2014,41(8):81-84.

    GAO Ke, XU Xiaojian, XIE Xiaobo, et al. Effect of nano-nickel powder on the performance of diamond impregnated cutting tools [J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2014,41(8):81-84.
    [18] LI S, HAN Z, MENG Q, et al. Effect of WC nanoparticles on the microstructure and properties of WC-bronze-Ni-Mn based diamond composites [J]. Applied Sciences,2018,8(9):1501. doi: 10.3390/app8091501
    [19] LOGINOV P A, SIDORENKO D A, LEVASHOV E A, et al. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools [J]. International Journal of Refractory Metals & Hard Materials, 2018.
    [20] JEYASIMMAN D, NARAYANASAMY R, PONALAGUSAMY R. Role of hybrid reinforcement on microstructural observation, characterization and consolidation behavior of AA 6061 nanocomposite [J]. Advanced Powder Technology,2015,26(4):1171-1182. doi: 10.1016/j.apt.2015.05.013
    [21] SRIBALAJI M, MUKHERJEE B, ISLAM A, et al. Microstructural and mechanical behavior of spark plasma sintered titanium carbide with hybrid reinforcement of tungsten carbide and carbon nanotubes [J]. Materials Science & Engineering: A,2017,702:10-21.
    [22] ALJAWAD H A, ALALKAWI H, AZIZ G A. Compression strength, dielectric and magnetic properties of new aluminium matrix hybrid nanocomposites [J]. IOP Conference Series: Materials Science and Engineering,2020,765(1):012056. doi: 10.1088/1757-899X/765/1/012056
    [23] 徐强, 刘一波, 徐良, 等. 利用配方均匀设计优化金刚石钻头的胎体配方 [J]. 金刚石与磨料磨具工程,2016,36(4):49-53.

    XU Qiang, LIU Yibo, XU Liang, et al. Optimizing diamond drill bit formula using uniform design [J]. Diamond & Abrasives Engineering,2016,36(4):49-53.
    [24] 方开泰. 均匀设计与均匀设计表 [M]. 北京: 科学出版社, 1994.

    FANG Kaitai. Uniform design and uniform design tables [M]. Beijing: Science Press, 1994.
    [25] 汪琦, 付杰, 万鸣, 等. 混料均匀设计法优化茯苓代料栽培配方 [J]. 中药材,2016,39(11):2445-2449.

    WANG Qi, FU Jie, WAN Ming, et al. Optimization of poria substitution cultivation formula by mixing uniform design [J]. Journal of Chinese Medicinal Materials,2016,39(11):2445-2449.
    [26] YANG Y, JIANG M, XU J, et al. Uniform design of optimizing formulation of friction materials with composite mineral fiber (CMF) and their friction and wear behavior [J]. Applied Composite Materials,2012,19(2):161-170. doi: 10.1007/s10443-011-9188-9
    [27] HUANG Q, LIU C, CHEN S, et al. Effects of formulation on set-to-touch time of waterborne alkyd resin by uniform design [J]. Progress in Organic Coatings,2015,87:189-196. doi: 10.1016/j.porgcoat.2015.06.001
    [28] 陈莉, 张蓓. 配方均匀设计在植物防紫外整理剂复配中的应用 [J]. 上海纺织科技,2017,45(1):23-26.

    CHEN Li, ZHANG Bei. Application of formula uniform design in the mixture of anti-ultraviolet agents extracted from vegetable [J]. Shanghai Textile Science & Technology,2017,45(1):23-26.
    [29] 刘中常. 纳米材料中纳米粒子团聚的原因及解决方法 [J]. 价值工程,2017,36(13):157-158.

    LIU Zhongchang. Reason for aggregation of nanoparticles in nano-materials and solutions [J]. Value Engineering,2017,36(13):157-158.
    [30] ZHANG Z, CHEN D. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites [J]. Materials Science and Engineering: A,2008,483(483/484):148-152.
    [31] NIE K, WANG X, XU F, et al. Microstructure and tensile properties of SiC nanoparticles reinforced magnesium matrix composite prepared by multidirectional forging under decreasing temperature conditions [J]. Materials Science & Engineering: A,2015,639:465-473.
    [32] 国秀花, 龙飞, 周延军, 等. 粉末冶金法制备氧化物颗粒增强Cu基复合材料 [J]. 特种铸造及有色合金,2018,38(2):205-209.

    GUO Xiuhua, LONG Fei, ZHOU Yanjun, et al. Microstructure and properties of oxide particle reinforced copper matrix composites by powder metallurgy [J]. Special Casting & Nonferrous Alloys,2018,38(2):205-209.
    [33] SCATTERGOOD R O, KOCH C C, MURTY K L, et al. Strengthening mechanisms in nanocrystalline alloys [J]. Materials Science & Engineering: A,2008,493(1/2):3-11.
    [34] YU H, GUO R X, XIA H T, et al. Study on the effect of WC size on the thermal expansion coefficient of WC/Cu composites [J]. Applied Mechanics & Materials,2013,275/276/277:1597-1600.
    [35] NYANOR P, EL-KADY O, YEHIA H M, et al. Effect of bimodal-sized hybrid TiC–CNT reinforcement on the mechanical properties and coefficient of thermal expansion of aluminium matrix composites [J]. Metals and Materials International,2020,27(4):753-766.
    [36] SUN W, GAO H, TAN S, et al. Wear detection of WC–Cu based impregnated diamond bit matrix based on SEM image and deep learning [J]. International Journal of Refractory Metals and Hard Materials,2021,98:105530. doi: 10.1016/j.ijrmhm.2021.105530
  • 加载中
图(4) / 表(9)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  8
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 录用日期:  2022-02-14
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-02-09

目录

    /

    返回文章
    返回