CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC基底HFCVD金刚石薄膜摩擦磨损性能

王贺 沈建辉 刘鲁生 闫广宇 吴玉厚 熊家骥 DANIELCristea

王贺, 沈建辉, 刘鲁生, 闫广宇, 吴玉厚, 熊家骥, DANIELCristea. SiC基底HFCVD金刚石薄膜摩擦磨损性能[J]. 金刚石与磨料磨具工程, 2022, 42(3): 283-289. doi: 10.13394/j.cnki.jgszz.2021.0206
引用本文: 王贺, 沈建辉, 刘鲁生, 闫广宇, 吴玉厚, 熊家骥, DANIELCristea. SiC基底HFCVD金刚石薄膜摩擦磨损性能[J]. 金刚石与磨料磨具工程, 2022, 42(3): 283-289. doi: 10.13394/j.cnki.jgszz.2021.0206
WANG He, SHEN Jianhui, LIU Lusheng, YAN Guangyu, WU Yuhou, XIONG Jiaji, DANIEL Cristea. Wear properties of HFCVD diamond films on SiC substrate[J]. Diamond &Abrasives Engineering, 2022, 42(3): 283-289. doi: 10.13394/j.cnki.jgszz.2021.0206
Citation: WANG He, SHEN Jianhui, LIU Lusheng, YAN Guangyu, WU Yuhou, XIONG Jiaji, DANIEL Cristea. Wear properties of HFCVD diamond films on SiC substrate[J]. Diamond &Abrasives Engineering, 2022, 42(3): 283-289. doi: 10.13394/j.cnki.jgszz.2021.0206

SiC基底HFCVD金刚石薄膜摩擦磨损性能

doi: 10.13394/j.cnki.jgszz.2021.0206
基金项目: 国家自然科学基金(51942507);学科创新引智项目(D18017);沈阳市科技局(18-400-6-05);中央军委科技委项目(20-163-00-TS-006-002-11);福建省-中科院STS计划配套项目(2020T3001)。
详细信息
    作者简介:

    王贺,男,1981年出生,副教授、硕士研究生导师。主要研究方向:硬脆材料加工技术。E-mail:wanghe9095@163.com

    通讯作者:

    刘鲁生,男,1979年生,硕士研究生导师、工程师。主要研究方向:薄膜材料制备装备及工艺开发。E-mail:lsliu@imr.ac.cn

  • 中图分类号: TQ174.1

Wear properties of HFCVD diamond films on SiC substrate

  • 摘要: 利用热丝化学气相沉积技术在碳化硅基底上制备微米金刚石薄膜、纳米金刚石薄膜和金刚石–石墨复合薄膜,采用扫描电子显微镜、原子力显微镜和拉曼光谱仪对不同金刚石薄膜的表面形貌和微观结构进行表征,通过摩擦磨损实验测试金刚石薄膜的摩擦系数并计算其磨损率,对比研究不同种类金刚石薄膜的摩擦磨损性能。结果表明:金刚石–石墨复合薄膜具有较好的摩擦磨损性能,薄膜表面粗糙度为53.8 nm,摩擦系数为0.040,和纳米金刚石薄膜(0.037)相当;金刚石–石墨复合薄膜的磨损率最低,为2.07×10−7 mm3·N−1·m−1。在相同实验条件下,同碳化硅基底的磨损率(9.89×10−5 mm3·N−1·m−1)和摩擦系数(0.580)相比,所有金刚石薄膜的磨损率和摩擦系数均有明显提升,说明在SiC基体表面沉积金刚石薄膜能够显著提高碳化硅材料在摩擦学领域的使役性能。

     

  • 图  1  碳化硅和热丝布置图

    Figure  1.  Silicon carbide and hot filament layout

    图  2  金刚石薄膜表面形貌图

    Figure  2.  Morphologies of diamond films

    图  3  金刚石薄膜三维形貌图

    Figure  3.  3D morphologies of diamond films

    图  4  金刚石薄膜的拉曼光谱图

    Figure  4.  Raman spectra of diamond films

    图  5  SiC基底和不同种类金刚石薄膜摩擦系数曲线图

    Figure  5.  Coefficients of friction of SiC substrate and diamond films

    图  6  金刚石薄膜和氮化硅球磨损率

    Figure  6.  Wear rates for diamond films and its counterpart SiN balls

    图  7  金刚石薄膜磨损后3D轮廓图

    Figure  7.  3D profile of worn diamond films

    图  8  氮化硅陶瓷球磨损后形貌图

    Figure  8.  Morphology of worn counterpart SiN balls

    图  9  金刚石薄膜磨损后形貌

    Figure  9.  SEM images of the wear tracks

    表  1  金刚石薄膜沉积参数

    Table  1.   Deposition parameters of diamond film

    参数 MCDNCDD/GC
    甲烷流量 VM /sccm42020
    基底温度 θs / ℃930±10860±10930±10
    热丝数量 n666
    热丝直径 df / mm0.50.50.5
    热丝–基底间距 d / mm888
    腔室气压 p / Pa100010001000
    热丝温度 θf / oC2600±502600±502600±50
    沉积时间 t / h333
    氢气流量 VH /sccm400400400
    注:① sccm为体积流量单位(standard cubic centimeter per minute),  表示每分钟流过的标准状况下的气体体积(以cm3计)。
    下载: 导出CSV
  • [1] GAYDAYCHUK A, LINNIK S. Tribological and mechanical properties of diamond films synthesized with high methane concentration [J]. International Journal of Refractory Metals and Hard Materials,2019,85:105057. doi: 10.1016/j.ijrmhm.2019.105057
    [2] 范冰庆, 王传新, 徐远钊, 等. 沉积气压对金刚石膜微米纳米结构转变的影响 [J]. 金刚石与磨料磨具工程,2021,41(1):12-16. doi: 10.13394/j.cnki.jgszz.2021.1.0002

    FAN Bingqing, WANG Chuanxin, XU Yuanzhao, et al. Influence of deposition pressure on micron-nanometer transition of diamond film [J]. Diamond & Abrasives Engineering,2021,41(1):12-16. doi: 10.13394/j.cnki.jgszz.2021.1.0002
    [3] 邓福铭, 陈立, 刘畅, 等. 微米、纳米及微/纳米复合金刚石涂层的切削性能研究 [J]. 金刚石与磨料磨具工程,2015,35(4):1-5,10. doi: 10.13394/j.cnki.jgszz.2015.4.0001

    DENG Fuming, CHEN Li, LIU Chang, et al. Study on the cutting properties of micro- nano- and micro/nano diamond coatings [J]. Diamond & Abrasives Engineering,2015,35(4):1-5,10. doi: 10.13394/j.cnki.jgszz.2015.4.0001
    [4] 吕反修. 化学气相沉积金刚石膜的研究与应用进展 [J]. 材料热处理学报,2010,31(1):15-28.

    LÜ Fanxiu. Progress in research and application development of CVD diamond film [J]. Transactions of Materials and Heat Treatment,2010,31(1):15-28.
    [5] BUNDY F P, HALL H T, STRONG H M, et al. Man-made diamonds [J]. Nature,1955,176(4471):51-55. doi: 10.1038/176051a0
    [6] WANG X C, ZHANG J G, SHEN B, et al. Erosion mechanism of the boron-doped diamond films of different thicknesses [J]. Wear,2014,312(1/2):1-10. doi: 10.1016/j.wear.2014.01.010
    [7] CHEN N C, PU L W, SUN F H, et al. Tribological behavior of HFCVD multilayer diamond film on silicon carbide [J]. Surface and Coatings Technology,2015,272:66-71. doi: 10.1016/j.surfcoat.2015.04.023
    [8] PRABHAKARAN G S, BHATTACHARYA S S, RAO M S R. Synthesis and characterisation of nanocrystalline, microcrystalline and functionally graded diamond coatings on reaction bonded SiC [J]. Materials Today: Proceedings,2018,5(3):10062-10070. doi: 10.1016/j.matpr.2017.10.207
    [9] 黄元盛, 邱万奇, 罗承萍, 等. CVD金刚石的形核和生长 [J]. 理化检验(物理分册),2006,42(8):382-385.

    HUANG Yuansheng, QIU Wanqi, LUO Chengping, et al. Nucleation and growth of CVD diamond [J]. Physical Testing and Chemical Analysis (Part A: Physical Testing),2006,42(8):382-385.
    [10] 梁小平. Y-TZP基陶瓷材料摩擦磨损的研究 [D]. 天津: 天津大学, 2003.

    LIANG Xiaoping. Studies on the friction and wear of Y-TZP matrix ceramic materials [D]. Tianjin: Tianjin University, 2003.
    [11] PRABHAKARAN G S, BHATTACHARYA S S, RAO M S R. A comparative study of the mechanical and tribological properties of intermittently and continuously grown multilayer diamond films on RB-SiC [J]. Diamond and Related Materials,2020,110:108140. doi: 10.1016/j.diamond.2020.108140
    [12] 杨国栋. 陶瓷基CVD金刚石薄膜的制备、摩擦试验及其应用研究 [D]. 上海: 上海交通大学, 2010.

    YANG Guodong. Study on the deposition, tribological properties and applications of CVD diamond films coated ceramics [D]. Shanghai: Shanghai Jiao Tong University, 2010.
    [13] 苏庆德. WC-Al2O3复合材料在不同工况下的摩擦磨损性能研究 [D]. 上海: 东华大学, 2020.

    SU Qingde. Investigation on the tribological properties of the WC-Al2O3 composites under different working conditions [D]. Shanghai: Donghua University, 2020.
    [14] TIAN Q Q, YANG B, ZHUANG H, et al. Hybrid diamond/graphite films: Morphological evolution, microstructure and tribological properties [J]. Diamond and Related Materials,2016,70:179-185. doi: 10.1016/j.diamond.2016.10.020
    [15] 秦文波. 聚晶金刚石对磨陶瓷材料摩擦表界面结构演化机理 [D]. 北京: 中国地质大学(北京), 2019.

    QIN Wenbo. Structural evolution mechanism on the sliding interfaces of polycrystalline diamond sliding against ceramic materials [D]. Beijing: China University of Geosciences (Beijing), 2019.
    [16] PODGURSKY V, BOGATOV A, YASHIN M, et al. Relation between self-organization and wear mechanisms of diamond films [J]. Entropy (Basel),2018,20(4):279. doi: 10.3390/e20040279
    [17] 张珂, 姜云浩, 陆峰, 等. 氮化硅表面生长金刚石薄膜及其摩擦磨损性能研究 [J]. 沈阳建筑大学学报(自然科学版),2017,33(4):688-695. doi: 10.11717/j.issn:2095-1922.2017.04.14

    ZHANG Ke, JIANG Yunhao, LU Feng, et al. Preparation and tribology property of diamond film on silicon nitride [J]. Journal of Shenyang Jianzhu University (Natural Science),2017,33(4):688-695. doi: 10.11717/j.issn:2095-1922.2017.04.14
    [18] SHEN B, LIN Q, CHEN S L, et al. High-rate synthesis of ultra-nanocrystalline diamond in an argon-free hot filament chemical vapor deposition atmosphere for tribological films [J]. Surface and Coatings Technology,2019,378(7/8):124999. doi: 10.1016/j.surfcoat.2019.124999
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  6
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 录用日期:  2022-03-14
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-03-12
  • 网络出版日期:  2022-07-13

目录

    /

    返回文章
    返回