CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声作用下碳化硅CMP流场特性分析

王泽晓 叶林征 祝锡晶 刘瑶 啜世达 吕博洋 王栋

王泽晓, 叶林征, 祝锡晶, 刘瑶, 啜世达, 吕博洋, 王栋. 超声作用下碳化硅CMP流场特性分析[J]. 金刚石与磨料磨具工程, 2025, 45(1): 102-112. doi: 10.13394/j.cnki.jgszz.2023.0273
引用本文: 王泽晓, 叶林征, 祝锡晶, 刘瑶, 啜世达, 吕博洋, 王栋. 超声作用下碳化硅CMP流场特性分析[J]. 金刚石与磨料磨具工程, 2025, 45(1): 102-112. doi: 10.13394/j.cnki.jgszz.2023.0273
WANG Zexiao, YE Linzheng, ZHU Xijing, LIU Yao, CHUAI Shida, LV Boyang, WANG Dong. Analysis of flow field characteristics of silicon carbide CMP under ultrasonic action[J]. Diamond & Abrasives Engineering, 2025, 45(1): 102-112. doi: 10.13394/j.cnki.jgszz.2023.0273
Citation: WANG Zexiao, YE Linzheng, ZHU Xijing, LIU Yao, CHUAI Shida, LV Boyang, WANG Dong. Analysis of flow field characteristics of silicon carbide CMP under ultrasonic action[J]. Diamond & Abrasives Engineering, 2025, 45(1): 102-112. doi: 10.13394/j.cnki.jgszz.2023.0273

超声作用下碳化硅CMP流场特性分析

doi: 10.13394/j.cnki.jgszz.2023.0273
详细信息
    通讯作者:

    叶林征,男,1990年生,博士、教授。主要研究方向:精密与特种加工技术。E-mail:yelinzheng@nuc.edu.cn

  • 中图分类号: TG580.692+2

Analysis of flow field characteristics of silicon carbide CMP under ultrasonic action

  • 摘要: 针对目前碳化硅抛光效率低、表面质量差等加工难题,采用超声辅助CMP(UCMP)加工工艺对其表面进行光滑无损化抛光。为探究超声辅助对CMP流场的影响,以超声振动下的抛光流场特性为研究对象,基于可实现k−ε模型对超声作用下的抛光流场特性进行分析,并采用有限元分析方法探究不同超声频率、超声振幅、液膜厚度对抛光流场内速度、压力的影响,且开展CMP和UCMP对照试验。结果表明:超声频率对抛光液流场有明显地促进作用,随着超声频率从20 kHz增大到40 kHz,流场最大速度从324.10 m/s增大到698.20 m/s,最大压力从177.00 MPa增大到1 580.00 MPa;与CMP相比,UCMP后碳化硅晶片可获得更好的抛光质量与更高的材料去除率,其表面粗糙度Ra、材料去除率RMRR分别为3.2 nm和324.23 nm/h。

     

  • 图  1  单晶碳化硅的CMP去除机理

    Figure  1.  CMP removal mechanism of single crystal silicon carbide

    图  2  碳化硅UCMP中的运动原理示意图

    Figure  2.  Schematic diagram of silicon carbide UCMP movement principle

    图  3  超声抛光流场示意图

    Figure  3.  Schematic diagram of ultrasonic polishing flow field

    图  4  超声抛光二维流场示意图

    Figure  4.  Schematic diagram of two-dimensional flow field in ultrasonic polishing

    图  5  抛光流场网格划分示意图

    Figure  5.  Schematic diagram of grid division for polishing flow field

    图  6  初始参数下1个周期内的速度流线图

    Figure  6.  Velocity streamline diagram within one cycle under initial parameters

    图  7  初始参数下1个周期内的压力云图

    Figure  7.  Pressure nephogram within one cycle under initial parameters

    图  8  1个周期内的压力分布

    Figure  8.  Pressure distribution within one cycle

    图  9  初始状态下不同液膜厚度时的最大速度

    Figure  9.  Maximum velocities at different film thicknesses in initial state

    图  10  初始状态下不同液膜厚度时的最大压力

    Figure  10.  Maximum pressure at different film thicknesses in initial state

    图  11  不同液膜厚度下沿x轴的压力分布

    Figure  11.  Pressure distribution along x-axis at different film thicknesses

    图  12  不同超声振幅时的最大速度

    Figure  12.  Maximum velocity at different ultrasound amplitudes

    图  13  不同超声振幅时的最大压力

    Figure  13.  Maximum pressures at different ultrasonic amplitudes

    图  14  不同超声频率下的最大速度

    Figure  14.  Maximum velocity at different ultrasonic frequencies

    图  15  不同超声频率下的最大压力

    Figure  15.  Maximum pressure at different ultrasonic frequencies

    图  16  UCMP试验设备

    Figure  16.  UCMP testing equipment

    图  17  碳化硅试样

    Figure  17.  SiC samples

    图  18  观测设备及碳化硅原始表面形貌

    Figure  18.  Observation equipment and original surface morphology of SiC

    图  19  聚氨酯抛光垫

    Figure  19.  Polyurethane polishing pad

    图  20  抛光后碳化硅表面形貌

    Figure  20.  SiC surface morphology after polishing

    图  21  2种工艺的材料去除率和表面粗糙度

    Figure  21.  Material removal rate and surface roughness of two processes

    表  1  参数设置

    Table  1.   Parameter setting

    参数取值
    超声频率 f / kHz20,30,40
    液膜厚度 d / μm30,40,50
    超声振幅 A / μm2,4,6
    下载: 导出CSV

    表  2  碳化硅的CMP工艺参数

    Table  2.   CMP process parameters of SiC

    工艺参数 规格或取值
    SiC试样尺寸 10 mm × 10 mm × 1 mm
    抛光机 UNIPOL-1203
    抛光垫 聚氨酯抛光垫
    抛光压力 p1 / N 11.76
    抛光盘转速 n / ( r·min-1) 180
    抛光液流量 qv / (mL·min-1) 10
    抛光液 SiO2悬浮抛光液
    下载: 导出CSV

    表  3  碳化硅的材料特性参数

    Table  3.   Material characteristic parameters of SiC

    材料特性 取值
    密度 ρ / (kg·m−3) 3215
    弹性模量 E / GPa 196
    泊松比 ε 0.21
    洛氏硬度 / HR 92
    断裂韧性 KIc / (MPa·m1/2) 4.5
    导热系数 Κ / (W·m−1·K−1) 110
    抗弯强度 σb / MPa 400
    下载: 导出CSV
  • [1] 邓家云. 单晶SiC电芬顿化学机械抛光机理研究 [D]. 广州: 广东工业大学, 2022.

    DENG Jiayun. Study on the mechanism of electro-fenton chemical mechanical polishing of single crystal SiC [D]. Guangzhou: Guangdong University of Technology, 2022.
    [2] ZHANG X, LIU X, WANG Y, et al. Optimizing the flatness of 4H-silicon carbide wafers by tuning the sequence of lapping [J]. Semiconductor Science and Technology,2023,38(3):034001. doi: 10.1088/1361-6641/acb1ce
    [3] XIE W, ZHANG Z, LIAO L, et al. Green chemical mechanical polishing of sapphire wafers using a novel slurry [J]. Nanoscale,2020,12(44):22518-22526. doi: 10.1039/D0NR04705H
    [4] LIAO L, ZHANG Z, MENG F, et al. A novel slurry for chemical mechanical polishing of single crystal diamond [J]. Applied Surface Science,2021,564:150431. doi: 10.1016/j.apsusc.2021.150431
    [5] ZHANG Z, CUI J, ZHANG J, et al. Environment friendly chemical mechanical polishing of copper [J]. Applied Surface Science,2019(467/468):5-11. doi: 10.1016/j.apsusc.2018.10.133
    [6] ZHANG Z, LIAO L, WANG X, et al. Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy [J]. Applied Surface Science,2020,506:144670. doi: 10.1016/j.apsusc.2019.144670
    [7] ZHANG Z, SHI Z, DU Y, et al. A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry [J]. Applied Surface Science,2018,427:409-415. doi: 10.1016/j.apsusc.2017.08.064
    [8] CUI X, ZHANG Z, SHI C, et al. A novel green chemical mechanical polishing for potassium dihydrogen phosphate using corn oil slurry [J]. Materials Today Sustainability,2022,20:100257. doi: 10.1016/j.mtsust.2022.100257
    [9] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials [J]. Current Applied Physics,2012,12:S41-S46. doi: 10.1016/j.cap.2012.02.016
    [10] ZHAI W, GAO B, CHANG J, et al. Optimization of ultrasonic-assisted polishing SiC through CFD simulation [J]. Nanomanufacturing and Metrology,2019,2(1):36-44. doi: 10.1007/s41871-018-0033-8
    [11] ZHOU M, ZHONG M, XU W. Novel model of material removal rate on ultrasonic-assisted chemical mechanical polishing for sapphire [J]. Friction,2023,11(11):2073-2090. doi: 10.1007/s40544-022-0713-7
    [12] LIU T, LEI H. Nd3 + -doped colloidal SiO2 composite abrasives: Synthesis and the effects on chemical mechanical polishing (CMP) performances of sapphire wafers [J]. Applied Surface Science,2017,413:16-26. doi: 10.1016/j.apsusc.2017.03.270
    [13] SU J, DU J, LIU H, et al. Research on material removal rate of CMP 6H-SiC crystal substrate (0001) Si surface based on abrasive alumina(Al2O3) [J]. Procedia Engineering,2011,24:441-446. doi: 10.1016/j.proeng.2011.11.2673
    [14] 梁庆瑞, 胡小波, 陈秀芳, 等. 4H-SiC的强氧化液化学机械抛光(英文) [J]. 人工晶体学报,2015,44(7):1741-1747. doi: 10.3969/j.issn.1000-985X.2015.07.005

    LIANG Qingrui, HU Xiaobo, CHEN Xiufang, el al. Chemical mechanical polishing of 4H-SiC with strong oxidizing slurry [J]. Journal of Synthetic Crystals(in English),2015,44(7):1741-1747. doi: 10.3969/j.issn.1000-985X.2015.07.005
    [15] 陈国美, 倪自丰, 钱善华, 等. SiC晶片不同晶面的CMP抛光效果对比研究 [J]. 人工晶体学报,2019,48(1):155-159,172. doi: 10.3969/j.issn.1000-985X.2019.01.026

    CHEN Guomei, NI Zifeng, QIAN Shanhua, el al. Influence of different crystallographic planes on CMP performance of SiC wafer [J]. Journal of Synthetic Crystals,2019,48(1):155-159,172. doi: 10.3969/j.issn.1000-985X.2019.01.026
    [16] YIN L, VANCOILLE E Y J, RAMESH K, et al. Surface characterization of 6H-SiC(0001) substrates in indentation and abrasive machining [J]. International Journal of Machine Tools and Manufacture,2004,44(6):607-615. doi: 10.1016/j.ijmachtools.2003.12.006
    [17] TAM H Y, CHENG H B, WANG Y W. Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components [J]. Journal of Materials Processing Technology,2007(192/193):276-280. doi: 10.1016/j.jmatprotec.2007.04.091
    [18] LIANG C, LIU W, ZHENG Y, et al. Fractal nature of non-spherical silica particles via facile synthesis for the abrasive particles in chemical mechanical polishing [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,500:146-153. doi: 10.1016/j.colsurfa.2016.04.031
    [19] LIANG C, LIU W, LI S, et al. A nano-scale mirror-like surface of Ti–6Al–4V attained by chemical mechanical polishing [J]. Chinese Physics B,2016,25(5):058301. doi: 10.1088/1674-1056/25/5/058301
    [20] MUHAMMAD S N F A, MOHD Y M H, SENG O B, et al. Ultrafiltration based on various polymeric membranes for recovery of spent tungsten slurry for reuse in chemical mechanical polishing process [J]. Journal of Membrane Science,2018,548:232-238. doi: 10.1016/j.memsci.2017.11.034
    [21] KHANNA A J, GUPTA S, KUMAR P, et al. Study of agglomeration behavior of chemical mechanical polishing slurry under controlled shear environments [J]. ECS Journal of Solid State Science and Technology,2018,7(5):P238-P242. doi: 10.1149/2.0091805jss
    [22] CHAVOSHI S Z, LUO X. Hybrid micro-machining processes: A review [J]. Precision Engineering,2015,41:1-23. doi: 10.1016/j.precisioneng.2015.03.001
    [23] YU T, ZHANG T, YU X, et al. Study on optimization of ultrasonic-vibration-assisted polishing process parameters [J]. Measurement,2019,135:651-660. doi: 10.1016/j.measurement.2018.12.008
    [24] KANG J W, HU Y S, MA J Y, et al. Effect of different air content on cavitation with ultrasonic treatment [J]. Advanced Materials Research,2013(655/657):43-47. doi: 10.4028/www.scientific.net/AMR.655-657.43
    [25] ZHAO Q, SUN Z, GUO B. Material removal mechanism in ultrasonic vibration assisted polishing of micro cylindrical surface on SiC [J]. International Journal of Machine Tools and Manufacture,2016,103:28-39. doi: 10.1016/j.ijmachtools.2016.01.003
    [26] ZHOU M, ZHONG M, XU W. Effects of ultrasonic amplitude on sapphire ultrasonic vibration assisted chemical mechanical polishing by experimental and CFD method [J]. Mechanics of Advanced Materials and Structures,2022,29(28):7086-7103. doi: 10.1080/15376494.2021.1992691
    [27] CHEN X, LIANG Y, CUI Z, et al. Study on material removal mechanism in ultrasonic chemical assisted polishing of silicon carbide [J]. Journal of Manufacturing Processes,2022,84:1463-1477. doi: 10.1016/j.jmapro.2022.11.014
    [28] YU T, ZHANG T, YANG T, et al. CFD simulation and experimental studies of suspension flow field in ultrasonic polishing [J]. Journal of Materials Processing Technology,2019,266:715-725. doi: 10.1016/j.jmatprotec.2018.11.034
    [29] MCTAVISH S, FESZTY D, NITZSCHE F. Evaluating Reynolds number effects in small-scale wind turbine experiments [J]. Journal of Wind Engineering and Industrial Aerodynamics,2013,120:81-90. doi: 10.1016/j.jweia.2013.07.006
    [30] SHAHEED R, MOHAMMADIAN A, KHEIRKHAH G H. A comparison of standard kε and realizable kε turbulence models in curved and confluent channels [J]. Environmental Fluid Mechanics,2019,19(2):543-568. doi: 10.1007/s10652-018-9637-1
    [31] SAHU S, BHATTACHARYAY R. Validation of COMSOL code for analyzing liquid metal magnetohydrodynamic flow [J]. Fusion Engineering and Design,2018,127:151-159. doi: 10.1016/j.fusengdes.2018.01.009
    [32] IVORRA B. Application of the laminar navier–stokes equations for solving 2D and 3D pathfinding problems with static and dynamic spatial constraints: Implementation and validation in comsol multiphysics [J]. Journal of Scientific Computing,2018,74(2):1163-1187. doi: 10.1007/s10915-017-0489-5
    [33] RAHAEIFARD M, KARIMZADEH A. A size-dependent axisymmetric plate element: Application to MEMS [J]. Archive of Applied Mechanics,2024,94(3):667-681. doi: 10.1007/s00419-024-02544-2
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  205
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 修回日期:  2024-03-06
  • 录用日期:  2024-03-18
  • 网络出版日期:  2024-06-21
  • 刊出日期:  2025-02-20

目录

    /

    返回文章
    返回