CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶碳化硅电化学机械抛光液的组分设计与优化

顾志斌 王浩祥 宋鑫 康仁科 高尚

顾志斌, 王浩祥, 宋鑫, 康仁科, 高尚. 单晶碳化硅电化学机械抛光液的组分设计与优化[J]. 金刚石与磨料磨具工程, 2024, 44(5): 675-684. doi: 10.13394/j.cnki.jgszz.2023.0246
引用本文: 顾志斌, 王浩祥, 宋鑫, 康仁科, 高尚. 单晶碳化硅电化学机械抛光液的组分设计与优化[J]. 金刚石与磨料磨具工程, 2024, 44(5): 675-684. doi: 10.13394/j.cnki.jgszz.2023.0246
GU Zhibin, WANG Haoxiang, SONG Xin, KANG Renke, GAO Shang. Composition design and optimization of electrochemical mechanical polishing slurry for single crystal SiC[J]. Diamond & Abrasives Engineering, 2024, 44(5): 675-684. doi: 10.13394/j.cnki.jgszz.2023.0246
Citation: GU Zhibin, WANG Haoxiang, SONG Xin, KANG Renke, GAO Shang. Composition design and optimization of electrochemical mechanical polishing slurry for single crystal SiC[J]. Diamond & Abrasives Engineering, 2024, 44(5): 675-684. doi: 10.13394/j.cnki.jgszz.2023.0246

单晶碳化硅电化学机械抛光液的组分设计与优化

doi: 10.13394/j.cnki.jgszz.2023.0246
基金项目: 国家重点研发计划(2022YFB3404304); 国家自然科学基金(51975091, 51991372); 河南省科技重大专项(221100230100)。
详细信息
    通讯作者:

    高尚,男,1982年出生,博士、副教授、博士研究生导师。主要研究方向:精密与超精密加工技术。E-mail:gaoshang@dlut.edu.cn

  • 中图分类号: TG73; TG58; TH162+.1

Composition design and optimization of electrochemical mechanical polishing slurry for single crystal SiC

  • 摘要: 单晶碳化硅具有高硬度和高化学惰性,化学机械抛光方法难以同时保证其加工效率和表面质量。电化学机械抛光具有较高的材料去除率,是加工碳化硅的一种有效方法。然而,目前针对碳化硅电化学机械抛光液的相关研究还较为缺乏。为此,首先通过单因素实验确定电化学机械抛光液中导电介质和磨粒种类,然后分析导电介质和磨粒浓度以及抛光液pH值对材料去除率和表面粗糙度的影响规律,最终确定抛光液的最佳参数。结果表明:在抛光液以NaCl为导电介质,SiO2为抛光磨粒时,碳化硅具有较好的抛光效率和表面质量,其材料去除率和表面粗糙度随着NaCl浓度的增大而增大,随着磨粒浓度的增加先增大后趋于稳定;当NaCl浓度为0.6 mol/L、SiO2质量分数为6%、抛光液pH值为7时,可以兼顾碳化硅抛光的材料去除率和表面粗糙度Sa,其值分别为 2.388 μm/h和0.514 nm。

     

  • 图  1  碳化硅工件的结构示意图

    Figure  1.  Structure of SiC workpiece

    图  2  碳化硅ECMP系统

    Figure  2.  ECMP system of SiC

    图  3  碳化硅材料去除率测量原理

    Figure  3.  Measurement principle of material removal rate of SiC

    图  4  磨粒种类对碳化硅ECMP的影响

    Figure  4.  Effects of abrasive types on ECMP of SiC

    图  5  不同磨粒抛光后的碳化硅表面形貌

    Figure  5.  Surface morphology of SiC after polishing with different abrasive grains

    图  6  导电介质种类对碳化硅ECMP的影响

    Figure  6.  Effect of different electrolytes on ECMP of SiC

    图  7  NaCl和NaNO3溶液的电导率变化趋势

    Figure  7.  Conductivity trends of NaCl and NaNO3 solutions

    图  8  SiO2浓度对碳化硅ECMP的影响

    Figure  8.  Effect of SiO2 concentration on ECMP of SiC

    图  9  磨粒质量分数为0时碳化硅抛光后的表面形貌

    Figure  9.  Surface morphology of SiC polished with 0 abrasive

    图  10  NaCl浓度对碳化硅ECMP的影响

    Figure  10.  Effect of NaCl concentration on ECMP of SiC

    图  11  抛光液pH值对碳化硅ECMP的影响

    Figure  11.  Effect of pH value on ECMP of SiC

    图  12  pH值为12时碳化硅抛光后的表面形貌

    Figure  12.  Surface morphology of SiC polished at pH 12

    图  13  最优参数下碳化硅抛光后的表面形貌

    Figure  13.  Surface morphology of SiC polished under optimal parameters

    表  1  碳化硅ECMP实验参数

    Table  1.   Experimental parameters for ECMP of SiC

    工艺参数 数值
    抛光转速 n / (r·min−1) 50
    抛光压力 p / kPa 100
    抛光时间 t / min 45
    抛光液流速 qv / (mL·min−1) 15
    下载: 导出CSV

    表  2  抛光电压对碳化硅ECMP 的影响

    Table  2.   The effect of polishing voltage on ECMP of SiC

    抛光电压 U / V 表面粗糙度 Sa / nm
    2 0.520
    4 0.641
    6 0.706
    下载: 导出CSV

    表  3  碳化硅和磨粒的硬度

    Table  3.   Hardness of SiC and abrasives

    材料种类维氏硬度Hv / GPa
    SiC24.0~28.0
    Al2O312.0~23.0
    CeO25.0~7.5
    SiO27.5
    下载: 导出CSV
  • [1] MADAR R. Silicon carbide in contention [J]. Nature,2004,430(7003):974-975. doi: 10.1038/430974a
    [2] EDDY C R, GASKILL D K. Silicon carbide as a platform for power electronics [J]. Science,2009,324(5933):1398-1400. doi: 10.1126/science.1168704
    [3] MILLAN J, GODIGNON P, PERPINA X, et al. A survey of wide bandgap power semiconductor devices [J]. IEEE Transactions on Power Electronics,2014,29(5):2155-2163. doi: 10.1109/TPEL.2013.2268900
    [4] ZOLPER J C. Emerging silicon carbide power electronics components: Applied power electronics conference and exposition [C]. Austin TX: Twentieth Annual IEEE, 2005.
    [5] CVETKOVIĆ S, MORSBACH C, RISSING L. Ultra-precision dicing and wire sawing of silicon carbide (SiC) [J]. Microelectronic Engineering,2011,88(8):2500-2504. doi: 10.1016/j.mee.2011.02.026
    [6] WANG H, GAO S, GUO X, et al. Atomic understanding of the plastic deformation mechanism of 4H-SiC under different grain depth-of-cut during nano-grinding [J]. Journal of Electronic Materials,2023,52(7):4865-4877. doi: 10.1007/s11664-023-10457-z
    [7] GAO S, WANG H, HUANG H, et al. Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal [J]. International Journal of Mechanical Sciences,2023,247:108147. doi: 10.1016/j.ijmecsci.2023.108147
    [8] YAN Q S, CHEN S K, PAN J S, et al. Surface and subsurface damage characteristics and material removal mechanism in 6H-SiC wafer grinding [J]. Materials Research Innovations,2014,18(sup2):S2.742-S2.747. doi: 10.1179/1432891714Z.000000000522
    [9] HSIEH C H, CHANG C Y, HSIAO Y-K, et al. Recent advances in silicon carbide chemical mechanical polishing technologies [J]. Micromachines,2022,13(10):1752. doi: 10.3390/mi13101752
    [10] WANG W, LIU W, SONG Z. Two-step chemical mechanical polishing of 4H-SiC(0001) wafer [J]. ECS Journal of Solid State Science and Technology,2021,10(7):74004. doi: 10.1149/2162-8777/ac12de
    [11] KATO T, WADA K, HOZOMI E, et al. High throughput SiC wafer polishing with good surface morphology [J]. Materials Science Forum,2007(556/557):753-756. doi: 10.4028/www.scientific.net/MSF.556-557.753
    [12] WANG X, CHEN J, BU Z, et al. Accelerated C-face polishing of silicon carbide by alkaline polishing slurries with Fe3O4 catalysts [J]. Journal of Environmental Chemical Engineering,2021,9(6):106863. doi: 10.1016/j.jece.2021.106863
    [13] LU J, CHEN R, LIANG H, et al. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the fenton reaction [J]. Precision Engineering,2018,52:221-226. doi: 10.1016/j.precisioneng.2017.12.011
    [14] YIN T, DOI T, KUROKAWA S, et al. Polishing characteristics of MnO2 polishing slurry on the Si-face of SiC wafer [J]. International Journal of Precision Engineering and Manufacturing,2018,19(12):1773-1780. doi: 10.1007/s12541-018-0206-9
    [15] CHEN G, LI J, LONG J, et al. Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide Si-face [J]. Applied Surface Science,2021,536:147963. doi: 10.1016/j.apsusc.2020.147963
    [16] DENG J, LU J, YAN Q, et al. Enhancement mechanism of chemical mechanical polishing for single-crystal 6H-SiC based on electro-fenton reaction [J]. Diamond and Related Materials,2021,111:108147. doi: 10.1016/j.diamond.2020.108147
    [17] YAMAMURA K, TAKIGUCHI T, UEDA M, et al. High-integrity finishing of 4H-SiC(0001) by plasma-assisted polishing [J]. Advanced Materials Research,2010(126/127/128):423-428. doi: 10.4028/www.scientific.net/AMR.126-128.423
    [18] DENG H, TAKIGUCHI T, UEDA M, et al. Damage-free dry polishing of 4H-SiC combined with atmospheric-pressure water vapor plasma oxidation [J]. Japanese Journal of Applied Physics,2011,50(8):8JG05.1-8JG05.4. doi: 10.1143/JJAP.50.08JG05
    [19] YAMAMURA K, TAKIGUCHI T, UEDA M, et al. Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface [J]. CIRP Annals,2011,60(1):571-574. doi: 10.1016/j.cirp.2011.03.072
    [20] DENG H, YAMAMURA K. XTEM observation of 4H-SiC(0001) surfaces processed by plasma assisted polishing [J]. Advanced Materials Research,2012,497:156-159. doi: 10.4028/www.scientific.net/AMR.497.156
    [21] ISHIKAWA Y, MATSUMOTO Y, NISHIDA Y, et al. Surface treatment of silicon carbide using TiO2(IV) photocatalyst [J]. Journal of the American Chemical Society,2003,125(21):6558-6562. doi: 10.1021/ja020359i
    [22] OHNISHI O, DOI T, KUROKAWA S, et al. Effects of atmosphere and ultraviolet light irradiation on chemical mechanical polishing characteristics of SiC wafers [J]. Japanese Journal of Applied Physics,2012,51(5S): 05EF05. doi: 10.1143/JJAP.51.05EF05
    [23] YUAN Z, HE Y, SUN X, et al. UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer [J]. Materials and Manufacturing Processes,2018,33(11):1214-1222. doi: 10.1080/10426914.2017.1364855
    [24] GAO B, ZHAI W, ZHAI Q, et al. Novel polystyrene/CeO2-TiO2 multicomponent core/shell abrasives for high-efficiency and high-quality photocatalytic-assisted chemical mechanical polishing of reaction-bonded silicon carbide [J]. Applied Surface Science,2019,484:534-541. doi: 10.1016/j.apsusc.2019.04.037
    [25] BARR H, SANO Y, MIMURA H, et al. Novel abrasive-free planarization of 4H-SiC (0001) using catalyst [J]. Journal of Electronic Materials,2006,35(8):L11-L14. doi: 10.1007/s11664-006-0218-6
    [26] ISOHASHI A, SANO Y, OKAMOTO T, et al. Study on reactive species in catalyst-referred etching of 4H–SiC using platinum and hydrofluoric acid [J]. Materials Science Forum,2013, 740/741/742:847-850. doi: 10.4028/www.scientific.net/MSF.740-742.847
    [27] KUBOTA A, YAGI K, MURATA J, et al. A study on a surface preparation method for single-crystal SiC using an Fe catalyst [J]. Journal of Electronic Materials,2009,38(1):159-163. doi: 10.1007/s11664-008-0583-4
    [28] OKAMOTO T, SANO Y, TACHIBANA K, et al. Improvement of removal rate in abrasive-free planarization of 4H-SiC substrates using catalytic platinum and hydrofluoric acid [J]. Japanese Journal of Applied Physics,2012,51(4):6501. doi: 10.1143/JJAP.51.046501
    [29] LI C, BHAT I B, WANG R, et al. Electro-chemical mechanical polishing of silicon carbide [J]. Journal of Electronic Materials,2004,33(5): 481-486. doi: 10.1007/s11664-004-0207-6
    [30] YANG X, OHKUBO Y, ENDO K, et al. AFM observation of initial oxidation stage of 4H-SiC(0001) in electrochemical mechanical polishing [J]. Procedia CIRP,2018,68:735-740. doi: 10.1016/j.procir.2017.12.129
    [31] YANG X, SUN R, OHKUBO Y, et al. Investigation of anodic oxidation mechanism of 4H-SiC(0001) for electrochemical mechanical polishing [J]. Electrochimica Acta,2018,271:666-676. doi: 10.1016/j.electacta.2018.03.184
    [32] YANG X, YANG X, GU H, et al. Charge utilization efficiency and side reactions in the electrochemical mechanical polishing of 4H-SiC (0001) [J]. Journal of the Electrochemical Society,2022,169(2):023501. doi: 10.1149/1945-7111/ac4b1f
    [33] LIU N, YI R, DENG H. Study of initiation and development of local oxidation phenomena during anodizing of SiC [J]. Electrochemistry Communications,2018,89:27-31. doi: 10.1016/j.elecom.2018.02.013
    [34] YANG X, YANG X, KAWAI K, et al. Highly efficient planarization of sliced 4H–SiC(0001) wafer by slurryless electrochemical mechanical polishing [J]. International Journal of Machine Tools and Manufacture,2019,144:103431. doi: 10.1016/j.ijmachtools.2019.103431
    [35] YANG X, YANG X, GU H, et al. Efficient and slurryless ultrasonic vibration assisted electrochemical mechanical polishing for 4H–SiC wafers [J]. Ceramics International,2022,48(6):7570-7583. doi: 10.1016/j.ceramint.2021.11.301
    [36] YANG X, YANG X, KAWAI K, et al. Novel SiC wafer manufacturing process employing three-step slurryless electrochemical mechanical polishing [J]. Journal of Manufacturing Processes,2021,70:350-360. doi: 10.1016/j.jmapro.2021.08.059
    [37] MURATA J, NAGATOMO D. Investigation of electrolytic condition on abrasive-free electrochemical mechanical polishing of 4H-SiC using Ce thin film [J]. ECS Journal of Solid State Science and Technology,2020,9(3):34002. doi: 10.1149/2162-8777/ab7672
    [38] MURATA J, YODOGAWA K, BAN K. Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane-CeO2 core-shell particles [J]. International Journal of Machine Tools & Manufacture,2017,114:1-7. doi: 10.1016/j.ijmachtools.2016.11.007
    [39] GAO B, ZHAI W J, ZHAI Q, et al. Electro-chemical mechanical polishing of 4H-SiC for scratch-free surfaces with less oxide layer at high efficiency [J]. ECS Journal of Solid State Science and Technology,2019,8(11):P677-P684. doi: 10.1149/2.0031911jss
    [40] CHEN Z, ZHAO Y. Investigation into electrochemical oxidation behavior of 4H-SiC with varying anodizing conditions [J]. Electrochemistry Communications,2019,109:106608. doi: 10.1016/j.elecom.2019.106608
    [41] YANG X, YANG X, KAWAI K, et al. Ultrasonic-assisted anodic oxidation of 4H-SiC(0001) surface [J]. Electrochemistry Communications,2019,100:1-5. doi: 10.1016/j.elecom.2019.01.012
    [42] YULI S, DUNWEN Z, JUTE T, et al. Dispersibility of CeO2 nanoparticles in water-ethanol suspensions [J]. Integrated Ferroelectrics,2014,153(1):54-59. doi: 10.1080/10584587.2014.902712
    [43] WANG W, ZHANG B, SHI Y, et al. Improvement in dispersion stability of alumina suspensions and corresponding chemical mechanical polishing performance [J]. Applied Surface Science,2022,597:153703. doi: 10.1016/j.apsusc.2022.153703
    [44] YANG X, YANG X, KAWAI K, et al. Dominant factors and their action mechanisms on material removal rate in electrochemical mechanical polishing of 4H-SiC(0001) surface [J]. Applied Surface Science,2021,562:150130. doi: 10.1016/j.apsusc.2021.150130
    [45] YANG X, YANG X, SUN R, et al. Obtaining atomically smooth 4H–SiC(0001) surface by controlling balance between anodizing and polishing in electrochemical mechanical polishing [J]. Nanomanufacturing and Metrology,2019,2(3):140-147. doi: 10.1007/s41871-019-00043-5
    [46] HERRMANN M, SEMPF K, WENDROCK H, et al. Electrochemical corrosion of silicon carbide ceramics in sodium hydroxide [J]. Journal of the European Ceramic Society,2014,34(7):1687-1693. doi: 10.1016/j.jeurceramsoc.2013.12.043
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  79
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-17
  • 修回日期:  2023-12-25
  • 录用日期:  2024-01-18
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回