Influence of diamond layer chamfer parameters on performance of PDC cutters
-
摘要: 聚晶金刚石复合片(polycrystalline diamond compact,PDC)切削齿的综合性能受金刚石层倒角参数的影响较大,特别是其抗冲击性能,但影响规律不明。为探究金刚石层倒角参数对PDC切削齿性能的影响规律,优化PDC切削齿结构并提高PDC钻头的钻进效率,采用目前应用较广的平面型和微弧型PDC切削齿,分别制作0.2、0.3、0.4、0.5 mm 4种倒角尺寸和15°、30°、45°3种倒角角度的PDC,得出不同金刚石层倒角参数的PDC切削齿受热后的耐磨性和抗冲击韧性,并对其钻进效率和破损形式进行分析。结果表明:倒角尺寸对PDC耐磨性和抗冲击韧性的影响存在的临界值约为0.3 mm,当倒角尺寸≤0.3 mm时,PDC的磨耗比大、抗冲击韧性低、破损形式多为崩刃;反之倒角尺寸>0.3 mm时,PDC的磨耗比降低、抗冲击韧性提升近1倍,累计吸收功可达1 000 J以上,且破损形式多为脱层。倒角角度对PDC耐磨性和抗冲击韧性的影响基本为线性关系,即倒角角度越小,磨耗比越大,抗冲击韧性越低。Abstract: Objectives: The precise control of diamond layer chamfer parameters has a complex influence on the comprehensive performance of PDC cutters. This control not only helps to expand ideas in PDC cutter design but also improves the overall efficiency of drilling tools. To fully analyze the effect of diamond layer chamfer parameters on the performance of PDC cutters, this study examined the correlation between the chamfer size and chamfer angle of the diamond layer and the performance of PDC cutters, namely wear resistance, impact toughness, drilling efficiency, and damage forms. It provided a scientific basis for optimizing the structure of PDC cutters to enhance the operational efficiency and reliability of PDC bits under complex geological conditions. Methods: The study combined experimental research and theoretical analysis. Two types of PDC cutters, planar type and micro-arc type, which are widely used in the market at present, were selected as experimental objects. Samples with different chamfer sizes (0.2, 0.3, 0.4, 0.5 mm) and chamfer angles (15°, 30°, 45°) were prepared using precision machining techniques. The samples were systematically heat-treated to simulate the actual welding process before testing, and the performance of the PDC cutters was evaluated by analyzing wear resistance, impact toughness, and drilling efficiency. Additionally, the interaction between the PDC cutter and rock was simulated by turning experiments, and the wear area and the damage forms were observed, measured, and analyzed using a microscope. Results: The experimental results revealed the influence of diamond chamfer parameters on the performance of PDC cutters. On the one hand, the chamfer size had a critical value of about 0.3 mm. When the chamfer size was less than or equal to this critical value, the wear ratio of PDC cutters was high, the grinding time was short, the energy level of breakage was low, impact toughness was low, and the primary form of damage was broken edges, which adversely affected the service life and drilling efficiency of the cutter. When the chamfer size exceeded the critical value, the PDC cutter wear ratio decreased, the grinding time increased, the damage energy level was high, impact toughness nearly doubled, the accumulated absorbed energy reached more than 1 000 J, and the predominant damage form was delamination, effectively extending the service life of the cutter. On the other hand, the influence of chamfer angle on the wear resistance and impact toughness of PDC cutters exhibited a linear relationship. As the chamfer angle increased, the wear ratio of PDC cutters gradually decreased, the wear area increased, indicating a decrease in wear resistance, and impact toughness increased correspondingly. In addition, the influence of the PDC cutter's shape on wear resistance and impact toughness was similar to that of the chamfer angle, namely, planar cutters had a high wear ratio and short grinding time, while micro-arc cutters had a reduced wear ratio but improved impact toughness. This provided an important basis for optimizing the chamfer angle and designing the shape structure of PDC cutters. By moderately increasing the chamfer angle or adopting a camber design, the comprehensive performance of the cutter could be improved to a certain extent. Conclusions: Through systematic experiments and analysis, the effect of diamond chamfer parameters on the comprehensive performance of PDC cutters is revealed. Especially, the discovery of the critical value of chamfer size provides guidance for the optimal design of PDC cutters. The fine regulation of diamond layer chamfer parameters presents a new approach to improving the performance of PDC cutters. In the development and production of PDC bits, the influence of these parameters should be fully considered. The performance of PDC cutters can be optimized by accurately regulating the chamfer size, chamfer angle, and shape structure, thereby further enhancing the drilling efficiency and service life of PDC bits.
-
Key words:
- PDC cutter /
- diamond layer chamfer parameters /
- comprehensive performance /
- damage form
-
表 1 试验方案
Table 1. Experiment scheme
编号 倒角参数 编号 倒角参数 1# A型,45°,0.2 mm 7# B型,45°,0.2 mm 2# A型,45°,0.3 mm 8# B型,45°,0.3 mm 3# A型,45°,0.4 mm 9# B型,45°,0.4 mm 4# A型,45°,0.5 mm 10# B型,45°,0.5 mm 5# A型,15°,0.4 mm 11# B型,15°,0.4 mm 6# A型,30°,0.4 mm 12# B型,30°,0.4 mm 表 2 不同倒角参数PDC切削齿的吸收功及破损形式
Table 2. The absorb energy and the damage forms of PDC cutters with different chamfer parameters
编号 倒角参数 10 J 20 J 30 J 40 J 50 J 累计吸收功 A / J 破损形式 冲 击 次 数 n 1# A型,45°,0.2 mm 10 10 6 480 崩刃 2# A型,45°,0.3 mm 10 10 7 510 脱层 3# A型,45°,0.4 mm 10 10 10 10 1 1050 脱层 4# A型,45°,0.5 mm 10 10 10 5 800 脱层 5# A型,15°,0.4 mm 10 7 240 崩刃 6# A型,30°,0.4 mm 10 10 10 10 3 1150 脱层 7# B型,45°,0.2 mm 10 4 180 崩刃 8# B型,45°,0.3 mm 10 10 6 480 崩刃 9# B型,45°,0.4 mm 10 10 10 10 5 1250 脱层 10# B型,45°,0.5 mm 10 10 10 10 2 1100 脱层 11# B型,15°,0.4 mm 10 10 5 450 脱层 12# B型,30°,0.4 mm 10 10 10 6 840 脱层 -
[1] 张富晓, 黄志强, 周已. PDC钻头切削齿失效分析 [J]. 石油矿场机械,2015,44(9):44-49. doi: 10.3969/j.issn.1001-3482.2015.09.011ZHANG Fuxiao, HUANG Zhiqiang, ZHOU Yi. Failure analysis of PDC bit cutter [J]. Oil Field Equipment,2015,44(9):44-49. doi: 10.3969/j.issn.1001-3482.2015.09.011 [2] DETOURNAY E, DEFOURNY P. A phenomenological model for the drilling action of drag bits [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1992,29(1):13-23. doi: 10.1016/0148-9062(92)91041-3 [3] 莫铭忠, 莫一君, 刘振辉. 锚杆钻头PDC倒角对钻进效率的影响 [J]. 超硬材料工程,2017,29(2):35-38. doi: 10.3969/j.issn.1673-1433.2017.02.008MO Mingzhong, MO Yijun, LIU Zhenhui. Influence of PDC chamferof anchor bits on its drilling efficiency [J]. Superhard Material Engineering,2017,29(2):35-38. doi: 10.3969/j.issn.1673-1433.2017.02.008 [4] AKBARI B, MISKA S Z, YU M, et al. The effects of size, chamfer geometry, and back rake angle on frictional response of PDC cutters [M]// [s.n.]. Paper presented at the 48th U.S. rock mechanics/geomechanics symposium. Minneapolis, Minnesota: [s.n.], 2014. [5] ROSTAMSOWLAT I, AKBARI B, EVANS B. Analysis of rock cutting process with a blunt PDC cutter under different wear flat inclination angles [J]. Journal of Petroleum Science and Engineering,2018,171:771-783. doi: 10.1016/j.petrol.2018.06.003 [6] SHAO F Y, LIU W, GAO D L. Effects of the chamfer and materials on performance of PDC cutters [J]. Journal of Petroleum Science and Engineering,2021,105(108887):1-10. doi: 10.1016/j.petrol.2021.108887 [7] 黄鹏. PDC钻头切削齿在砾岩层中磨损规律研究 [D]. 荆州: 长江大学, 2021.HUANG Peng. Research on the wear law of PDC bit cutting teeth in conglomerate layer [D]. Jingzhou: Yangtze University, 2021. [8] 谭凯文. PDC钻头破岩机理实验研究 [D]. 北京:中国石油大学, 2017.TAN Kaiwen. Study on the rock fragmentation mechanism of PDC bit [D]. Beijing: China University of Petroleum , 2017. [9] 李劲, 尹卓, 刘忠, 等. PDC 齿破岩力预测模型研究 [J]. 石油机械,2021,49(8):23-29.LI Jin, YIN Zhuo, LIU Zhong, et al. Research on rock breaking force prediction model of PDC cutter [J]. China Petroleum Machinery,2021,49(8):23-29. [10] 张绍和, 谢晓红, 王佳亮. 复合片斜镶角对钻头钻进性能的影响 [J]. 西南石油大学学报(自然科学版),2012,34(1):171-175.ZHANG Shaohe, XIE Xiaohong, WANG Jialiang. Research of bit’s performance affected by the cutting angle of PDC [J]. Journal of Southwest Petroleum University (Science & Technology Edition),2012,34(1):171-175. [11] 全国磨料磨具标准化技术委员会. 聚晶金刚石磨耗比测定方法: JB/T 3235—2013 [S]. 北京: 机械工业出版社, 2014.National Abrasives Standardization Technical Committee. Testing method for abrasion ratio of polycrystalline diamond: JB/T 3235—2013 [S]. Beijing: China Machine Press, 2014. [12] 煤炭行业煤矿专用设备标准化技术委员会. 金刚石复合片不取心钻头: MT/T 786—2011 [S]. 北京: 煤炭工业出版社, 2011.Technical Committee for Standardization of Special Equipment for Coal Mines, Coal Industry. Polycrystalline diamond compact non-core bit: MT/T 786—2011 [S]. Beijing: Coal Industry Press, 2011.