CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiCp/Al复合材料纳米压痕/划痕下的脆塑性行为研究

刘亚梅 王佳力 谷岩 吴爽 李震

刘亚梅, 王佳力, 谷岩, 吴爽, 李震. SiCp/Al复合材料纳米压痕/划痕下的脆塑性行为研究[J]. 金刚石与磨料磨具工程, 2024, 44(5): 607-620. doi: 10.13394/j.cnki.jgszz.2023.0165
引用本文: 刘亚梅, 王佳力, 谷岩, 吴爽, 李震. SiCp/Al复合材料纳米压痕/划痕下的脆塑性行为研究[J]. 金刚石与磨料磨具工程, 2024, 44(5): 607-620. doi: 10.13394/j.cnki.jgszz.2023.0165
LIU Yamei, WANG Jiali, GU Yan, WU Shuang, LI Zhen. Research of brittle-plastic behavior of SiCp/Al composites based on nano-indentation/scratch[J]. Diamond & Abrasives Engineering, 2024, 44(5): 607-620. doi: 10.13394/j.cnki.jgszz.2023.0165
Citation: LIU Yamei, WANG Jiali, GU Yan, WU Shuang, LI Zhen. Research of brittle-plastic behavior of SiCp/Al composites based on nano-indentation/scratch[J]. Diamond & Abrasives Engineering, 2024, 44(5): 607-620. doi: 10.13394/j.cnki.jgszz.2023.0165

SiCp/Al复合材料纳米压痕/划痕下的脆塑性行为研究

doi: 10.13394/j.cnki.jgszz.2023.0165
基金项目: 吉林省科技发展项目(20230201103GX)。
详细信息
    作者简介:

    刘亚梅,女,1970年生,硕士、教授。主要研究方向:机械电子工程/自由曲面精加工。E-mail:949823612@qq.com

    通讯作者:

    谷岩,男,1980年生,博士、副教授。主要研究方向:微纳制造与数控装备。E-mail:guyan@ccut.edu.cn

  • 中图分类号: TG58; TB333

Research of brittle-plastic behavior of SiCp/Al composites based on nano-indentation/scratch

  • 摘要: 为探究SiCp/Al复合材料中两相材料相互作用引起的力学性能差异,研究微观尺度下法向载荷变化对SiCp/Al复合材料形变和去除的影响。采用纳米压痕实验,基于Oliver-Pharr法测得其硬度和弹性模量,并对其压痕表面进行观察,结合有限元仿真分析产生力学性能差异的原因;同时,根据纳米压痕实验所得力学参数进行变载荷纳米划痕仿真,并配合实验后划痕表面观察结果分析材料的形变和脆塑性行为。结果表明:当金刚石压头作用于SiC颗粒时,颗粒出现破碎和二次压入现象,所测硬度与弹性模量小于单晶SiC的理论值;当金刚石压头作用于基体相时,由于SiC颗粒阻碍基体压入,复合材料的硬度与弹性模量测量结果偏大。在纳米划痕过程中,复合材料的去除形式随载荷变化体现为划擦、耕犁和切削阶段,其中的基体相通过塑性流动产生塑性脊堆积并伴随有涂覆现象,SiC颗粒则以脱黏、断裂破碎和拔出等脆性机制而去除,且SiC颗粒的二次压入、断裂、破碎和拔出是导致复合材料力学性能与单晶SiC的力学性能产生巨大差异的主要原因。随着划痕载荷增加,SiC体积分数为45 %的SiCp/Al复合材料的去除机制更多取决于以塑性去除为主的基体相,而SiC颗粒则主要表现为脆性去除。

     

  • 图  1  压痕仿真示意图

    Figure  1.  Schematic diagram of indentation simulation

    图  2  载荷-深度曲线与压痕截面轮廓

    Figure  2.  Load-depth curve and indentation cross-section profile

    图  3  纳米压痕设备与复合材料原始表面形貌

    Figure  3.  Nanoindentation equipment and original surface morphology of materials

    图  4  加载不同位置处的载荷-深度曲线

    Figure  4.  Load-depth curves at different loading positions

    图  5  金刚石压头作用于SiC颗粒处的压痕SEM形貌及其对应载荷−深度曲线与仿真结果

    Figure  5.  SEM morphology with its corresponding load-depth curve and simulation results of indentation on SiC particles with diamond indenter

    图  6  金刚石压头作用于两相界面处的压痕SEM形貌及其对应载-荷深度曲线与仿真结果

    Figure  6.  SEM morphology with its corresponding load-depth curve and simulation results of indentation at the interface between two phases with diamond indenter

    图  7  金刚石压头作用于基体相的压痕SEM形貌及其对应载-荷深度曲线与仿真结果

    Figure  7.  SEM morphology with its corresponding load-depth curve and simulation results of diamond indenter acting on matrix phase indentation

    图  8  划痕仿真示意图

    Figure  8.  Scratch simulation diagram

    图  9  变载荷划痕仿真云图

    Figure  9.  Variable load scratch simulation cloud map

    图  10  纳米划痕SEM形貌与局部放大图

    Figure  10.  Nano-scratch SEM morphology and local amplification

    图  11  划擦阶段的SEM形貌与仿真云图

    Figure  11.  SEM morphology and simulation nephogram during scratching stage

    图  12  耕犁阶段的SEM形貌与仿真云图

    Figure  12.  SEM morphology and simulation nephogram of ploughing stage

    图  13  切削阶段的SEM形貌与仿真云图

    Figure  13.  SEM morphology and simulation nephogram during cutting stage

    图  14  复合材料的去除形式

    Figure  14.  Removal forms of composite materials

    图  15  SiCp/Al变载荷划痕表面的形貌与划痕深度

    Figure  15.  Morphology and scratch depth of SiCp/Al scratch surface under variable load

    表  1  工件与压头材料属性

    Table  1.   Material properties of workpiece and indenter

    参数复合材料金刚石压头
    AlSiC
    密度 ρ / (t·mm−3)2.70 × 10−93.13 × 10−94.25 × 10−9
    杨氏模量 E / MPa70 000420 0001 147 000
    泊松比 ν0.300.140.07
    下载: 导出CSV

    表  2  SiCp/Al复合材料的微观力学性能参数

    Table  2.   Micromechanical properties parameters of SiCp/Al composite materials

    力学性能参数 SiC颗粒 两相界面 基体相
    硬度
    H / GPa
    范围 20.14~26.24 4.22~5.01 1.15~1.69
    平均值 22.75 4.62 1.39
    弹性模量
    E1 / GPa
    范围 150.50~224.23 76.35~88.60 60.69~77.12
    平均值 190.78 84.38 66.52
    下载: 导出CSV

    表  3  Al基体相J-C本构模型参数

    Table  3.   J-C constitutive model parameters of Al matrix phase

    参数取值
    A / MPa 270
    B / MPa 134
    C0.008 2
    m 0.703
    n 0.514
    Tmelt / ℃ 600
    Troom / ℃ 20
    ${\bar \varepsilon ^{{\mathrm{pl}}}}/ {\mathrm{S}}^{-1}$ 0.001
    下载: 导出CSV

    表  4  Al基体相的J-C损伤参数

    Table  4.   J-C damage parameters of Al matrix phase

    参数 取值
    D1 0.13
    D2 0.13
    D3 −1.551
    D4 0.011
    D5 0
    下载: 导出CSV

    表  5  SiC颗粒脆性断裂的本构模型参数

    Table  5.   Constitutive model parameters for brittle fracture of SiC particles

    参数 取值
    $ {\sigma _{\mathrm{b}}} $/ MPa 1 500
    $ G_{\mathrm{f}}^{\mathrm{I}} $/ (J·m−2) 30
    $ p $ 1
    $ {\varepsilon _{\max }^{{\mathrm{ck}}}} $ 0.001
    下载: 导出CSV
  • [1] FAN Y, XU Y, HAO Z, et al. Cutting deformation mechanism of SiCp/Al composites based on strain gradient theory [J]. Journal of Materials Processing Technology,2022,299:117345. doi: 10.1016/j.jmatprotec.2021.117345
    [2] YIN W, DUAN C, LI Y, et al. Dynamic cutting force model for cutting SiCp/Al composites considering particle characteristics stochastic models [J]. Ceramics International,2021,47(24):35234-35247. doi: 10.1016/j.ceramint.2021.09.066
    [3] XIANG D, LIU G, PENG P, et al. Micro-removal characteristics of SiCp/Al by ultrasonic vibration-assisted scratch [J]. Materials and Manufacturing Processes,2022,37(16):1829-1836. doi: 10.1080/10426914.2022.2065007
    [4] 房玉鑫, 王优强, 张平, 等. SiCp/Al复合材料高速切削去除机理及表面质量研究 [J]. 表面技术,2022,51(10):293-300. doi: 10.16490/j.cnki.issn.1001-3660.2022.10.031

    FANG Yuxin, WANG Youqiang, ZHANG Ping, et al. High-speed cutting removal mechanism and surface quality of SiCp/Al composites [J]. Surface Technology,2022,51(10):293-300. doi: 10.16490/j.cnki.issn.1001-3660.2022.10.031
    [5] ZHU C, GU P, WU Y, et al. Surface roughness prediction model of SiCp/Al composite in grinding [J]. International Journal of Mechanical Sciences,2019,155:98-109. doi: 10.1016/j.ijmecsci.2019.02.025
    [6] LAGHARI R A, JAMIL M, LAGHARI A A, et al. A critical review on tool wear mechanism and surface integrity aspects of SiCp/Al MMCs during turning: Prospects and challenges [J]. The International Journal of Advanced Manufacturing Technology,2023,126(7/8):2825-2862. doi: 10.1007/s00170-023-11178-7
    [7] SHEN H, BROUSSEAU E, KULASEGARAM S. Assessment and validation of SPH modeling for nano-indentation [J]. Computational Particle Mechanics,2023,10(3):603-6132. doi: 10.1007/s40571-022-00514-5
    [8] YUAN Z, SHEN Q, LIU H, et al. Damage behavior and mechanism of SiCp/Al composites under biaxial tension [J]. Materials Characterization,2021,180:111402. doi: 10.1016/j.matchar.2021.111402
    [9] AKINWAMIDE S O, AKINRIBIDE O J, OLUBAMBI P A. Microstructural evolution, mechanical and nanoindentation studies of stir cast binary and ternary aluminium based composites [J]. Journal of Alloys and Compounds,2021,850:156586. doi: 10.1016/j.jallcom.2020.156586
    [10] ZHANG Z, YAO P, WANG J, et al. Analytical modeling of surface roughness in precision grinding of particle reinforced metal matrix composites considering nanomechanical response of material [J]. International Journal of Mechanical Sciences,2019,157:243-253. doi: 10.1016/j.ijmecsci.2019.04.047
    [11] LIU Y, WANG Q, LU C, et al. Microscopic residual stress evolution at the SiC/Al interface during nanoindentation via molecular dynamics simulation [J]. Surfaces and Interfaces,2022:102210. doi: 10.1016/j.surfin.2022.102210
    [12] KONG X, WANG B, WANG M, et al. Microscratch characteristic and deformation mechanism of SiC particle-reinforced composites at elevated temperatures [J]. Advanced Composites Letters,2020,29:1-11. doi: 10.1177/2633366X19898694
    [13] SUN X, YAO P, QU S, et al. Material properties and machining characteristics under high strain rate in ultra-precision and ultra-high-speed machining process: A review [J]. The International Journal of Advanced Manufacturing Technology,2022,120(11/12):7011-7042. doi: 10.1007/s00170-022-09111-5
    [14] 卢守相, 杨秀轩, 张建秋, 等. 关于硬脆材料去除机理与加工损伤的理性思考 [J]. 机械工程学报,2022,58(15):31-45. doi: 10.3901/JME.2022.15.031

    LU Shouxiang, YANG Xiuxuan, ZHANG Jianqiu, et al. Rational discussion on material removal mechanisms and machining damage of hard and brittle materials [J]. Journal of Mechanical Engineering,2022,58(15):31-45. doi: 10.3901/JME.2022.15.031
    [15] ZHANG Y, WU T, LI C, et al. Numerical simulations of grinding force and surface morphology during precision grinding of leucite glass ceramics [J]. International Journal of Mechanical Sciences,2022,231:107562. doi: 10.1016/j.ijmecsci.2022.107562
    [16] LI C, ZHANG Q, ZHANG Y, et al. Nanoindentation and nanoscratch tests of YAG single crystals: An investigation into mechanical properties, surface formation characteristic, and theoretical model of edge-breaking size [J]. Ceramics International,2020,46(3):3382-3393. doi: 10.1016/j.ceramint.2019.10.048
    [17] FU J, KAMALI-BERNARD S, BERNARD F, et al. Comparison of mechanical properties of CSH and portlandite between nano-indentation experiments and a modeling approach using various simulation techniques [J]. Composites Part B: Engineering,2018,151:127-138. doi: 10.1016/j.compositesb.2018.05.043
    [18] LUU H T, DANG S L, HOANG T V, et al. Molecular dynamics simulation of nanoindentation in Al and Fe: On the influence of system characteristics [J]. Applied Surface Science,2021,551:149221. doi: 10.1016/j.apsusc.2021.149221
    [19] SONG H, YAVAS H, VAN D G E, et al. Discrete dislocation dynamics simulations of nanoindentation with pre-stress: Hardness and statistics of abrupt plastic events [J]. Journal of the Mechanics and Physics of Solids,2019,123:332-347. doi: 10.1016/j.jmps.2018.09.005
    [20] ZHANG Z, NI Y, ZHANG J, et al. Multiscale simulation of surface defects influence nanoindentation by a quasi-continuum method [J]. Crystals,2018,8(7):291. doi: 10.3390/cryst8070291
    [21] XIAO X, LI S, YU L. Effect of irradiation damage and indenter radius on pop-in and indentation stress-strain relations: Crystal plasticity finite element simulation [J]. International Journal of Mechanical Sciences,2021,199:106430. doi: 10.1016/j.ijmecsci.2021.106430
    [22] LICHINCHI M, LENARDI C, HAUPT J, et al. Simulation of Berkovich nanoindentation experiments on thin films using finite element method [J]. Thin Solid Films,1998,312(1/2):240-248. doi: 10.1016/S0040-6090(97)00739-6
    [23] LI H, CHEN J, CHEN Q, et al. Determining the constitutive behavior of nonlinear visco-elastic-plastic PMMA thin films using nanoindentation and finite element simulation [J]. Materials & Design,2021,197:109239. doi: 10.1016/j.matdes.2020.109239
    [24] 李洪钢. LED封装基板超精密磨削表面材料去除机理[D]. 大连: 大连理工大学, 2021.

    LI Honggang. Research on material removal mechanism in ultra-precision grinding of LED package substrate[D]. Dalian: Dalian University of Technology, 2021.
    [25] GU P, ZHU C, TAO Z, et al. Micro-removal mechanism of high volume fraction SiCp/Al composite in grinding based on cohesive theory [J]. The International Journal of Advanced Manufacturing Technology,2021,117:243-265. doi: 10.1007/s00170-021-07578-2
    [26] 刘亚龙. 材料微纳米尺度压痕硬度检测的仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LIU Yalong. Research on material micro-nano indentation hardness measurement simulation [D]. Harbin: Harbin Institute of Technology, 2010.
    [27] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research,1992,7(6):1564-1583. doi: 10.1557/JMR.1992.1564
    [28] 张杰. 基于纳米压痕法AZ31BMg/6061Al复合材料连接界面行为研究 [D]. 太原: 太原理工大学, 2021.

    ZHANG Jie. Study on interface behavior of AZ31BMg/6061Al composite based on nanoindentation method[D]. Taiyuan: Taiyuan University of Technology, 2021.
    [29] GUO X, GUO Q, NIE J, et al. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites [J]. Materials Science and Engineering:A,2018,711:643-649. doi: 10.1016/j.msea.2017.11.068
    [30] WANG Y, LIAO W, YANG K, et al. Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs [J]. The International Journal of Advanced Manufacturing Technology,2019,100:1393-1404. doi: 10.1007/s00170-018-2769-0
    [31] 魏斌. 加热辅助切削SiCp/Al复合材料的切削力和表面质量研究 [D]. 大连: 大连理工大学, 2020.

    WEI Bin. Research on cutting force and surface quality of heating-assisted cutting SiCp/Al composite[D]. Dalian: Dalian University of Technology, 2020.
    [32] ZHANG H, RAMESH K T, CHIN E S C. Effects of interfacial debonding on the rate-dependent response of metal matrix composites [J]. Acta Materialia,2005,53(17):4687-4700. doi: 10.1016/j.actamat.2005.07.004
    [33] 田达, 傅宏俊, 吴利伟, 等. 增韧复合材料的GI断裂韧性有限元模拟 [J]. 复合材料科学与工程,2018,(1):18-22. doi: 10.3969/j.issn.1003-0999.2018.01.003

    TIAN Da, FU Hongjun, WU Liwei, et al. Finite element simulation of GI fracture toughness of toughened composites [J]. Composites Science and Engineering,2018,(1):18-22. doi: 10.3969/j.issn.1003-0999.2018.01.003
    [34] 郑伟. SiCp/Al复合材料超声振动磨削材料去除及表面质量研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHENG Wei. Research on material removal and surface finish in ultrasonic vibration grinding of SiCp/Al composites [D]. Harbin: Harbin Institute of Technology, 2017.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  109
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 修回日期:  2023-12-19
  • 录用日期:  2023-12-28
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回