CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mo2C-TiN0.3复合材料的高温高压制备及性能

邹芹 王宽 李艳国 戴伟绩 罗永安

邹芹, 王宽, 李艳国, 戴伟绩, 罗永安. Mo2C-TiN0.3复合材料的高温高压制备及性能[J]. 金刚石与磨料磨具工程, 2024, 44(4): 440-448. doi: 10.13394/j.cnki.jgszz.2023.0157
引用本文: 邹芹, 王宽, 李艳国, 戴伟绩, 罗永安. Mo2C-TiN0.3复合材料的高温高压制备及性能[J]. 金刚石与磨料磨具工程, 2024, 44(4): 440-448. doi: 10.13394/j.cnki.jgszz.2023.0157
ZOU Qin, WANG Kuan, LI Yanguo, DAI Weiji, LUO Yongan. Preparation and properties of Mo2C-TiN0.3 composite materials at high temperature and high pressure[J]. Diamond & Abrasives Engineering, 2024, 44(4): 440-448. doi: 10.13394/j.cnki.jgszz.2023.0157
Citation: ZOU Qin, WANG Kuan, LI Yanguo, DAI Weiji, LUO Yongan. Preparation and properties of Mo2C-TiN0.3 composite materials at high temperature and high pressure[J]. Diamond & Abrasives Engineering, 2024, 44(4): 440-448. doi: 10.13394/j.cnki.jgszz.2023.0157

Mo2C-TiN0.3复合材料的高温高压制备及性能

doi: 10.13394/j.cnki.jgszz.2023.0157
基金项目: 河北省高校科研重点项目(ZD2021099)。
详细信息
    作者简介:

    邹芹,女,1978年生,教授、博士生导师。主要研究方向:超硬工具。E-mail:zq@ysu.edu.cn

    通讯作者:

    李艳国,男,1978年生,副研究员、硕士生导师。主要研究方向:陶瓷及其复合材料。E-mail:lyg@ysu.edu.cn

  • 中图分类号: TB332

Preparation and properties of Mo2C-TiN0.3 composite materials at high temperature and high pressure

  • 摘要: 将Mo2C和TiN0.3粉体采用机械合金化和高温高压烧结相结合的方法进行分层烧结,并制备30% Mo2C-70%TiN0.3的烧结体复合材料,分析Mo2C-TiN0.3烧结体的物相组成、微观组织结构及力学性能。结果表明:Mo2C和TiN0.3 间存在明显的相互扩散,且形成了2层不同的扩散层;随着烧结温度不断升高,Mo2C-TiN0.3烧结体的晶粒尺寸逐渐变大,会导致烧结体的机械性能变差;在烧结过程中有高硬高脆的MoC生成,能够维持Mo2C-TiN0.3烧结体的硬度在19.0~20.0 GPa,但会降低其断裂韧性。

     

  • 图  1  维氏硬度的压痕及裂纹图

    Figure  1.  Indentation and crack diagram of Vickers hardness

    图  2  TiN0.3与Mo2C分层烧结的SEM图和EDS线扫描图

    Figure  2.  SEM and EDS line scan of layered sintering of TiN0.3 and Mo2C

    图  3  不同温度下Mo2C-TiN0.3复合烧结体的XRD图谱

    Figure  3.  XRD pattern of Mo2C-TiN0.3 composite sintered body at different temperatures

    图  4  不同烧结温度下Mo2C-TiN0.3复合烧结体的断口SEM形貌

    Figure  4.  SEM fracture morphology of Mo2C-TiN0.3 composite sintered body at different sintering temperatures

    图  5  不同烧结温度下Mo2C-TiN0.3复合烧结体的力学性能

    Figure  5.  Mechanical properties of Mo2C-TiN0.3 composite sintered body at different sintering temperatures

    表  1  TiN0.3制备原料

    Table  1.   TiN0.3 preparation raw materials

    构成取值
    Ti∶CH4N2O 摩尔比 R16∶1
    Ti∶N 原子比 R23∶1
    Ti 质量 m1 / g33.08
    CH4N2O质量 m2 / g 6.92
    下载: 导出CSV

    表  2  1 500 ℃下Mo2C-TiN0.3复合烧结体断口的点能谱分析结果

    Table  2.   Point energy spectrum analysis results of Mo2C-TiN0.3 composite sintered body at 1 500 ℃

    位置质量分数 ω / %
    TiNCMo
    Point 13.641.6251.2943.45
    Point 228.5650.9411.229.28
    下载: 导出CSV

    表  3  TiN基陶瓷的机械性能对比

    Table  3.   Comparison of mechanical properties of TiN based ceramics

    性能来源
    Mo2C-TiN0.3TiN-TiB2TiN-HfCTiN-Al2O3未增强
    TiN基陶瓷
    本实验文献[21]文献[35]文献[36]文献[34]
    维氏硬度
    Hv / GPa
    19.9 14.8 17.9 18.9 12.5
    断裂韧性
    KIC / (MPa·m1/2)
    3.2 5.8 5.2 4.5 3.4
    下载: 导出CSV
  • [1] XUE J X, LIU H T, TANG Y, et al. Effect of sintering atmosphere on the densification behavior of hot pressed TiN ceramics [J]. Ceramics International, 2013, 39(7): 8531-8535.
    [2] CHÁVEZ J M M, MOSHTAGHIOUN B M, HERNÁNDEZ F L C, et al. Sintering kinetics, defect chemistry and room-temperature mechanical properties of titanium nitride prepared by spark plasma sintering [J]. Journal of Alloys and Compounds, 2019, 807: 151666.
    [3] TIAN L, LI Y M, JU P, et al. A novel approach to prepare reticulated porous TiN ceramics with high strength and high porosity by in-situ synthesis [J]. Journal of the European Ceramic Society, 2022, 42(6): 2718-2725.
    [4] ANSARI S A, KHAN N A, HASAN Z, et al. Electrochemical synthesis of titanium nitride nanoparticles onto titanium foil for electrochemical supercapacitors with ultrafast charge/discharge [J]. Sustainable Energy & Fuels, 2020, 4(5): 2480-2490.
    [5] KAWRANI S, NADA A A, BEKHEET M F, et al. Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets [J]. Chemical Engineering Journal, 2020, 389: 124326.
    [6] ZHU J J, JIANG L, ZHAI L H, et al. Effect of TiN inclusions on oxidation behavior of austenitic stainless steels [J]. Materials Letters, 2023, 335: 133761.
    [7] LIN L Y, TIAN Y H, YU W X, et al. Corrosion and hardness characteristics of Ti/TiN-modified Ti6Al4V alloy in marine environment [J]. Ceramics International, 2022, 48(23): 34848-34854.
    [8] RONADSON, B J, VIJAYAN, K, SANMUGAM, S, et al. Improving dry machining performance of surface modified cutting tools through combined effect of texture and TiN-WS2 coating [J]. Journal of Manufacturing Processes, 2023, 85: 101-108.
    [9] GAO W J, MA F L, YIN Y H, et al. Robust and durable transparent superhydrophobic F-TNTs/TiN coating fabricated by structure tuning on surface of TiN hard coating [J]. Applied Surface Science, 2023, 613: 155967.
    [10] WANG S, KONG Y, CHEN L, et al. Initial oxidation on 12 grain boundaries in pure TiN coating and on (Al, Si, Cr) doped Σ3 (111) grain boundaries: A first-principles calculations [J]. Surfaces and Interfaces, 2023, 36: 102531.
    [11] PENG C, GAO X, WANG M Z, et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity [J]. Applied Physics Letters, 2019, 114(1): 011905-1-011905-5.
    [12] WANG Q S, SARKAR A, WANG D, et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries [J]. Energy & Environmental Science, 2019, 12(8): 2433-2442.
    [13] ZHAI S, ROJAS J, AHLBORG N, et al. The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting [J]. Energy & Environmental Science, 2018, 11(8): 2172-2178.
    [14] VALLAURI D, ADRIÁN I C A, CHRYSANTHOU A. TiC–TiB2 composites: A review of phase relationships, processing and properties [J]. Journal of the European Ceramic Society, 2008, 28(8): 1697-1713.
    [15] MONTEVERDE F. Progress in the fabrication of ultra-high-temperature ceramics: “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2-SiC composite [J]. Composites Science and Technology, 2005, 65(11/12): 1869-1879.
    [16] SHON I J. Enhanced mechanical properties of TiN-graphene composites rapidly sintered by high-frequency induction heating [J]. Ceramics International, 2017, 43(1): 890-896.
    [17] 战再吉, 程庭信, 李国伟, 等. 高熵陶瓷的制备与应用[J]. 燕山大学学报, 2022, 46(5): 377-384

    ZHAN Zaiji, CHENG Tingxin, LI Guowei, et al. Preparation and application of high-entropy ceramics [J]. Journal of Yanshan University, 2022, 46(5): 377-384.
    [18] LEI H Y, FENG P, ZHANG X M, et al. Effect of TiN addition on the microstructure and mechanical properties of Ti (C, N)-based cermets [J]. Advanced Materials Research, 2012, (602/603/ 604): 536-539.
    [19] RADAJEWSKI M, HENSCHEL S, GRÜTZNER S, et al. Microstructure and mechanical properties of bulk TiN-AlN composites processed by FAST/SPS [J]. Ceramics International, 2016, 42(8): 10220-10227.
    [20] SONG J P, JIANG L K, LIANG G X, et al. Strengthening and toughening of TiN-based and TiB2-based ceramic tool materials with HfC additive [J]. Ceramics International, 2017, 43(11): 8202-8207.
    [21] YANG Z L, LIU Z G, OUYANG J H, et al. Synthesis route and mechanical properties of reactive hot pressed TiN–TiB2 ceramics [J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 54-59.
    [22] WYZGA P, JAWORSKA L, BUCKO M M, et al. TiN-TiB2 composites prepared by various sintering techniques [J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 571-576.
    [23] DELBARI S A, NAYEBI B, GHASALI E, et al. Spark plasma sintering of TiN ceramics codoped with SiC and CNT [J]. Ceramics International, 2019, 45(3): 3207-3216.
    [24] MOGHANLOU F S, VAJDI M, JAFARZADEH H, et al. Spark plasma sinterability and thermal diffusivity of TiN ceramics with graphene additive [J]. Ceramics International, 2021, 47(7): 10057-10062.
    [25] KITIWAN M, ITO A, GOTO T. Spark plasma sintering of TiN-TiB2-hBN composites and their properties [J]. Ceramics International, 2015, 41(3, Part B): 4498-4503.
    [26] UEMATSU K, NAKAMURA M, KATO Z, et al. Hot isostatic pressing and thermoelectrical properties of non-stoichiometric titanium nitride [J]. Journal of the Ceramic Society of Japan, 1989, 97: 63-67.
    [27] SUAREZ-VAZQUEZ S, NANKO M. Preparation of dense TiN1−X (X=0~0.4) by pulsed electric current sintering: Densification and mechanical behavior [J]. International Journal of Refractory Metals and Hard Materials, 2014, 44: 54-59.
    [28] XU S, WANG M Z, QIAO L, et al. Enhancing the sintering ability of TiNx by introduction of nitrogen vacancy defects [J]. Ceramics International, 2015, 41(8): 9514-9520.
    [29] SUN J F, WANG M Z, ZHAO Y C, et al. Synthesis of titanium nitride powders by reactive ball milling of titanium and urea [J]. Journal of Alloys and Compounds, 2009, 482(1/2): L29-L31.
    [30] KOHICHI T. Evaluation of elastic/plastic indentation stress to determine fracture toughness [J]. Journal of the Japan Institute of Metals and Materials, 1984, 48: 1157-1162.
    [31] KARANAM M K, GULIVINDALA G, CHINTHAPENTA V R. Effect of anisotropy on the ductile fracture in metal reinforcements of brittle matrix composites [J]. Theoretical and Applied Fracture Mechanics, 2021, 112: 102923.
    [32] PINEAU A, BENZERGA A A, PARDOEN T. Failure of metals I: Brittle and ductile fracture [J]. Acta Materialia, 2016, 107: 424-483.
    [33] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward [J]. Journal of Advanced Ceramics, 2021, 10(3): 385-441.
    [34] AKINRIBIDE O J, AKINWAMIDE S O, OLUBAMBI P A. Morphological analysis and high-temperature phase stability of spark plasma sintered TiN-MWCNTs ceramic composite [J]. Journal of the Australian Ceramic Society, 2023, 59(3): 521-532.
    [35] SONG J, JIANG L, LIANG G, et al. Strengthening and toughening of TiN-based and TiB2-based ceramic tool materials with HfC additive [J]. Ceramics International, 2017, 43(11): 8202-8207.
    [36] LI J, GAO L, GUO J, et al. Mechanical properties and electrical conductivity of TiN-Al2O3 nanocomposites [J]. Journal of the European Ceramic Society, 2003, 23(1): 69-74.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  55
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-10-27
  • 录用日期:  2023-11-22
  • 网络出版日期:  2024-09-25
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回