CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同产地叶蜡石的传压特性

刘力 邵方源 罗玉财 武强 于建涛 于金平 王海阔 侯志强 王超 杨易侃

刘力, 邵方源, 罗玉财, 武强, 于建涛, 于金平, 王海阔, 侯志强, 王超, 杨易侃. 不同产地叶蜡石的传压特性[J]. 金刚石与磨料磨具工程, 2024, 44(4): 433-439. doi: 10.13394/j.cnki.jgszz.2023.0152
引用本文: 刘力, 邵方源, 罗玉财, 武强, 于建涛, 于金平, 王海阔, 侯志强, 王超, 杨易侃. 不同产地叶蜡石的传压特性[J]. 金刚石与磨料磨具工程, 2024, 44(4): 433-439. doi: 10.13394/j.cnki.jgszz.2023.0152
LIU Li, SHAO Fangyuan, LUO Yucai, WU Qiang, YU Jiantao, YU Jinping, WANG Haikuo, HOU Zhiqiang, WANG Chao, YANG Yikan. Pressure-transmitting properties of pyrophyllites from different localities[J]. Diamond & Abrasives Engineering, 2024, 44(4): 433-439. doi: 10.13394/j.cnki.jgszz.2023.0152
Citation: LIU Li, SHAO Fangyuan, LUO Yucai, WU Qiang, YU Jiantao, YU Jinping, WANG Haikuo, HOU Zhiqiang, WANG Chao, YANG Yikan. Pressure-transmitting properties of pyrophyllites from different localities[J]. Diamond & Abrasives Engineering, 2024, 44(4): 433-439. doi: 10.13394/j.cnki.jgszz.2023.0152

不同产地叶蜡石的传压特性

doi: 10.13394/j.cnki.jgszz.2023.0152
基金项目: 中国石油集团万米超深层油气资源钻完井关键技术与装备研究(2022ZG06);华北油田复杂井钻完井技术支撑与服务(CPET2022-JS-3244);中国石油集团工程技术研究院高温高压下 PDC 钻头切削齿破岩系统研制(CPET2022-10S)联合资助。
详细信息
    作者简介:

    刘力,男,1987年生,硕士,高级工程师。主要研究方向:钻井工艺技术、钻井提速工具研发。E-mail:liulidri@cnpc.com.cn

    通讯作者:

    邵方源,男,1990年生,博士,工程师。主要研究方向:PDC钻头高效破岩技术。E-mail:shaofydr@cnpc.com.cn

  • 中图分类号: TQ164

Pressure-transmitting properties of pyrophyllites from different localities

  • 摘要: 作为密封传压介质,叶蜡石已被广泛应用于实验室和工业的高压合成中。然而,叶蜡石中矿物成分的改变将影响其传压效率及密封性。本研究中在6 × 8 MN大腔体六面顶压机中完成4种不同产地叶蜡石在室温下的压力标定工作,并通过X射线衍射研究叶蜡石中矿物组成的变化对传压效率的影响。结果表明:叶蜡石中含有较高硬度的矿物(如水铝石、勃姆石、白云母和高岭石),可有效提升叶蜡石的传压效率;随着腔体压力提升,叶蜡石的传压效率逐渐降低,施加更高的实际加载力(油压)也不能明显地提高腔体压力;高压处理后的叶蜡石4比叶蜡石2有更好的传压效率,但受矿物成分变化的影响,叶蜡石4容易发生密封失效,而叶蜡石2有良好的弹性回复效果和密封性,能够稳定完成升压卸压过程。综合考虑传压效率和密封效果,叶蜡石2具有最佳的应用价值和经济效益。

     

  • 图  1  标压原理

    Figure  1.  Calibration-pressure principle

    图  2  4种叶蜡石的光学图片和XRD图谱

    Figure  2.  Optical images and XRD patterns of four pyrophyllites

    图  3  标压物质的电阻与4种叶蜡石对应的加载力的关系

    Figure  3.  The resistances of calibration-pressure wires versus the corresponding loading force for four pyrophyllites

    图  4  4种叶蜡石的腔体压力和加载力的关系图

    Figure  4.  The relationship between cell pressure and loading force for four pyrophyllites

    图  5  4种叶蜡石经高压处理前后的XRD图谱

    Figure  5.  XRD patterns of four pyrophyllites before and after high-pressure treatment

    表  1  4种叶蜡石的密度和颜色

    Table  1.   Density and color of four pyrophyllites

    叶蜡石 1 2 3 4
    密度 ρ / (g·cm−3) 2.60 2.61 2.63 2.60
    颜色 黄白 黑灰 灰白
    下载: 导出CSV

    表  2  4种不同叶蜡石的压力标定结果

    Table  2.   Result of pressure calibration of four pyrophyllites

    标压物质相变类型相变压力 p / GPa平均加载力 F / MN
    叶蜡石1叶蜡石2叶蜡石3叶蜡石4
    BiI-II2.551.701.801.791.55
    TlII-III3.683.043.033.112.82
    BaI-II5.505.595.505.614.88
    下载: 导出CSV
  • [1] YUAN Y F, ZHU X D, ZHOU Y H, et al. Pressure-engineered optical properties and emergent superconductivity in chalcopyrite semiconductor ZnSiP2 [J]. NPG Asia Materials,2021,13(1):15. doi: 10.1038/s41427-021-00285-0
    [2] YAMANE R, KOMATSU K, GOUCHI J, et al. Experimental evidence for the existence of a second partially-ordered phase of ice VI [J]. Nature Communications,2021,12(1):1129. doi: 10.1038/s41467-021-21351-9
    [3] BIESNER T, LI W, TSIRLIN A A, et al. Spectroscopic trace of the Lifshitz transition and multivalley activation in thermoelectric SnSe under high pressure [J]. NPG Asia Materials,2021,13(1):12. doi: 10.1038/s41427-021-00283-2
    [4] ZHANG J W, HE D W, FANG L M, et al. The effect of size matching between anvils and the pressure transmitting medium on the pressure-generation efficiency and sealing performance for a large volume cubic pressure cell [J]. Review of Scientific Instruments,2020,91(12):125103. doi: 10.1063/5.0018188
    [5] FANG L M, HE D W, CHEN C, et al. Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets [J]. High Pressure Research,2007,27(3):367-374. doi: 10.1080/08957950701553796
    [6] WANG H K, HE D W, TAN N, et al. Note: An anvil-preformed gasket system to extend the pressure range for large volume cubic presses [J]. Review of Scientific Instruments,2010,81(11):116102. doi: 10.1063/1.3488606
    [7] WU J J, LIU F M, ZHANG J W, et al. Cobalt-doped magnesium oxide pressure-transmitting medium for high pressure and high-temperature apparatus [J]. High Pressure Research,2018,38(4):448-457. doi: 10.1080/08957959.2018.1510922
    [8] ZHANG S Y, ZHANG H F. Genesis of the Baiyun pyrophyllite deposit in the central Taihang Mountain, China: Implications for gold mineralization in wall rocks [J]. Ore Geology Reviews,2020,120:103313. doi: 10.1016/j.oregeorev.2020.103313
    [9] BERGAYA F, LAGALY G. Handbook of clay science [M]. Amsterdam: Elsevier Science Ltd, 2013.
    [10] BENTAYEB A, AMOURIC M, OLIVES J, et al. XRD and HRTEM characterization of pyrophyllite from Morocco and its possible applications [J]. Applied Clay Science,2003,22(5):211-221. doi: 10.1016/S0169-1317(03)00066-8
    [11] GATTA G D, LOTTI P, MERLINI M, et al. Elastic behaviour and phase stability of pyrophyllite and talc at high pressure and temperature [J]. Physics and Chemistry of Minerals,2015,42:309-318. doi: 10.1007/s00269-014-0721-x
    [12] QIN X Z, ZHAO J, WANG J M, et al. Atomic structure, electronic and mechanical properties of pyrophyllite under pressure: A first-principles study [J]. Minerals,2020,10(9):778. doi: 10.3390/min10090778
    [13] MIDLANDS W. Focus on pigments [J]. Asian Chemical News,2004,10(438):22.
    [14] SHATSKIY A, LITASOV K D, TERASAKI H, et al. Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa [J]. High Pressure Research,2010,30(3):443-450. doi: 10.1080/08957959.2010.515079
    [15] 王海阔, 任瑛, 贺端威, 等. 六面顶压机立方压腔内压强的定量测量及受力分析 [J]. 物理学报,2017,66(9):090702. doi: 10.7498/aps.66.090702

    WANG Haikuo, REN Ying, HE Duanwei, et al. Force analysis and pressure quantitative measurement for the high pressure cubic cell [J]. Acta Physica Sinica,2017,66(9):090702. doi: 10.7498/aps.66.090702
    [16] BRIDGMAN P W. The resistance of 72 elements, alloys and compounds to 100, 000 kg/cm2 [J]. Proceedings of the American Academyof Arts dnd Sciences, 1952,81(4):165,167-251.
    [17] HAN Q G, MA H G, ZHOU L, et al. Finite element design of double bevel anvils of large volume cubic high pressure apparatus [J]. Review of Scientific Instruments,2007,78(11):113906. doi: 10.1063/1.2814027
    [18] HOU Z Q, WANG H K, YANG Y N, et al. High-pressure synthesis of high-performance submicron-sized polycrystalline β-Si3N4 bulk without additives [J]. Ceramics International,2020,46(8):12449-12457. doi: 10.1016/j.ceramint.2020.02.007
    [19] WANG S M, HE D W, WANG W D, et al. Pressure calibration for the cubic press by differential thermal analysis and the high-pressure fusion curve of aluminum [J]. High Pressure Research,2009,29(4):806-814. doi: 10.1080/08957950903335521
    [20] ZHANG J W, LIU F M, WU J J, et al. Experimental study on the pressure-generation efficiency and pressure-seal mechanism for large volume cubic press [J]. Review of Scientific Instruments,2018,89(7):075106. doi: 10.1063/1.5030092
    [21] KAWAZOE T, NISHIYAMA N, NISHIHARA Y, et al. Pressure generation to 25 GPa using a cubic anvil apparatus with a multi-anvil 6-6 assembly [J]. High Pressure Research,2010,30(1):167-174. doi: 10.1080/08957950903503912
    [22] WANG H K, HE D W, YAN X Z, et al. Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressure-transmitting mediums to 8 GPa in a large-volume cubic cell [J]. High Pressure Research,2011,31(4):581-591. doi: 10.1080/08957959.2011.614238
    [23] DECKER D L, BASSETT W A, MERRILL L, et al. High‐pressure calibration: A critical review [J]. Journal of Physical and Chemical Reference Data,1972,1(3):773-836. doi: 10.1063/1.3253105
    [24] 何寿安, 李家璘, 成向荣, 等. 静态超高压高温技术的若干问题 [J]. 物理学报,1977,26(2):100-114. doi: 10.3321/j.issn:1000-3290.1977.02.002

    HE Shouan, LI Jialin, CHENG Xiangrong, et al. Some aspects in high pressure high temperature technology [J]. Acta Physica Sinica,1977,26(2):100-114. doi: 10.3321/j.issn:1000-3290.1977.02.002
    [25] FROST D J, POE B T, TRøNNES R G, et al. A new large-volume multi- anvil system [J]. Physics of the Earth and Planetary Interiors,2004,143:507-514. doi: 10.1016/j.pepi.2004.03.003
    [26] 王海阔, 贺端威, 许超, 等. 基于国产铰链式六面顶压机的大腔体静高压技术研究进展 [J]. 高压物理学报,2013,27(5):633-661. doi: 10.11858/gywlxb.2013.05.001

    WANG Haikuo, HE Duanwei, XU Chao, et al. Development of large volume-high static pressure techniques based on the hinge-type cubic presses [J]. Chinese Journal of High Pressure Physics,2013,27(5):633-661. doi: 10.11858/gywlxb.2013.05.001
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  83
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-29
  • 修回日期:  2023-10-30
  • 录用日期:  2023-11-20
  • 网络出版日期:  2024-09-25
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回