CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分形理论的旋转超声磨削Si3N4陶瓷表面微观形貌

孙永国 王伟 李文知 魏恒举 魏士亮

孙永国, 王伟, 李文知, 魏恒举, 魏士亮. 基于分形理论的旋转超声磨削Si3N4陶瓷表面微观形貌[J]. 金刚石与磨料磨具工程, 2024, 44(3): 382-390. doi: 10.13394/j.cnki.jgszz.2023.0103
引用本文: 孙永国, 王伟, 李文知, 魏恒举, 魏士亮. 基于分形理论的旋转超声磨削Si3N4陶瓷表面微观形貌[J]. 金刚石与磨料磨具工程, 2024, 44(3): 382-390. doi: 10.13394/j.cnki.jgszz.2023.0103
SUN Yongguo, WANG Wei, LI Wenzhi, WEI Hengju, WEI Shiliang. Surface micromorphology of Si3N4 ceramic by rotating ultrasonic grinding based on fractal theory[J]. Diamond & Abrasives Engineering, 2024, 44(3): 382-390. doi: 10.13394/j.cnki.jgszz.2023.0103
Citation: SUN Yongguo, WANG Wei, LI Wenzhi, WEI Hengju, WEI Shiliang. Surface micromorphology of Si3N4 ceramic by rotating ultrasonic grinding based on fractal theory[J]. Diamond & Abrasives Engineering, 2024, 44(3): 382-390. doi: 10.13394/j.cnki.jgszz.2023.0103

基于分形理论的旋转超声磨削Si3N4陶瓷表面微观形貌

doi: 10.13394/j.cnki.jgszz.2023.0103
基金项目: 黑龙江省普通本科高等学校青年创新人才培养计划“石英陶瓷超声磨-抛复合加工表面形貌收敛关键技术研究”(UNPYSCT-2020195)。
详细信息
    作者简介:

    孙永国,男,1964年生,硕士、教授。主要研究方向:石油开采用机械设备等。E-mail:sygedu@163.com

    通讯作者:

    魏士亮,男,1987年生,博士、副教授。主要研究方向:难加工材料的精密加工。E-mail:weishiliang@hrbeu.edu.cn

  • 中图分类号: TG58; TG74

Surface micromorphology of Si3N4 ceramic by rotating ultrasonic grinding based on fractal theory

  • 摘要:

    为了研究旋转超声磨削Si3N4陶瓷表面的微观形貌,基于分形理论研究不同加工参数下Si3N4陶瓷表面微观形貌的变化。设计旋转超声磨削Si3N4陶瓷正交试验,对比分析不同加工参数对Si3N4陶瓷表面分形维数和多重分形谱的影响,并设计单因素试验研究不同加工参数下Si3N4陶瓷表面的粗糙度、分形维数和多重分形谱。结果表明:旋转超声磨削Si3N4陶瓷表面时,分形维数能更好地表征其加工表面的缺陷状态,多重分形谱则能更好地表征其加工表面缺陷的起伏程度变化。

     

  • 图  1  试验设备

    Figure  1.  Test equipments

    图  2  轮廓算数平均偏差

    Figure  2.  Contour arithmetic mean deviation

    图  3  旋转超声磨削Si3N4陶瓷的表面轮廓线

    Figure  3.  Surface profile of Si3N4 Ceramic machined by rotating ultrasonic grinding

    图  4  网格划分示意图

    Figure  4.  Schematic diagram of grid division

    图  5  分形维数计算过程

    Figure  5.  Calculation process of fractal dimension

    图  6  多重分形谱计算过程

    Figure  6.  Calculation process of multifractal spectrum

    图  7  加工表面形貌图

    Figure  7.  Machined surface morphology diagram

    图  8  主轴转速对加工表面粗糙度和分形维数的影响

    Figure  8.  Influences of spindle speeds on machined surface roughness and fractal dimension

    图  9  进给速度对表面粗糙度和分形维数影响

    Figure  9.  Influence of feed speed on surface roughness and fractal dimension

    图  10  切削深度对表面粗糙度和分形维数影响

    Figure  10.  Influence of cutting depth on surface roughness and fractal dimension

    图  11  振动功率对表面粗糙度和分形维数影响

    Figure  11.  Influence of vibration power on surface roughness and fractal dimension

    图  12  加工参数对表面粗糙度与多重分形谱的影响

    Figure  12.  Influence of machining parameters on surface roughness and multifractal spectrum

    表  1  热压烧结Si3N4陶瓷机械性能

    Table  1.   Mechanical properties of hot-pressing sintered Si3N4 ceramics

    参数取值
    密度 ρ / (g·cm−3)3.21
    硬度 H / GPa16.5
    断裂韧性 KIC / (MPa·cm−1/2)7.8
    抗压强度 σ / MPa1 200
    弹性模量 E / GPa305
    下载: 导出CSV

    表  2  因素和水平表

    Table  2.   Factor and level table

    水平因素
    主轴转速
    n / (r·min−1)
    进给速度
    V / (mm·min−1)
    切削深度
    ap / μm
    振动功率
    P / %
    13 000 503030
    24 000 804550
    35 0001106070
    46 0001307590
    下载: 导出CSV

    表  3  试验方案

    Table  3.   Test scheme

    试验
    组号
    主轴转速
    n / (r·min−1)
    进给速度
    V / (mm·min−1)
    切削深度
    ap / μm
    振动功率
    P / %
    1 3 000 50 30 30
    2 5 000 80 30 70
    3 6 000 130 30 90
    4 4 000 80 30 50
    5 4 000 130 60 30
    6 6 000 110 45 30
    7 5 000 80 75 30
    8 3 000 130 75 70
    9 6 000 50 75 50
    10 3 000 110 60 50
    11 4 000 110 75 90
    12 4 000 50 45 70
    13 5 000 50 60 90
    14 5 000 130 45 50
    15 6 000 80 60 70
    16 3 000 80 45 90
    下载: 导出CSV

    表  4  表面粗糙度、分形维数和多重分形谱的方差分析表

    Table  4.   Table of variance analysis of surface roughness, fractal dimension and multifractal spectrum

    影响因素因变量均方值F显著性
    主轴转速 n / (r·min−1) Ra 0.032 103.648 0.002
    D 8.506 20.296 0.017
    Δa 0.001 10.007 0.045
    Δf(a) 0.000 2.548 0.231
    进给速度 V / (mm·min−1) Ra 0.005 16.457 0.023
    D 0.001 146.496 0.001
    Δa 0.006 102.333 0.002
    Δf(a) 0.001 22.197 0.015
    切削深度 ap / μm Ra 0.003 9.946 0.046
    D 3.456 8.246 0.058
    Δa 0.000 3.607 0.160
    Δf(a) 0.000 5.063 0.108
    振动功率 P / % Ra 0.000 1.023 0.493
    D 0.000 68.564 0.003
    Δa 0.001 18.185 0.020
    Δf(a) 7.743 1.784 0.323
    下载: 导出CSV
  • [1] ZHANG Z, SHI K, HUANG X, et al. Development of a probabilistic algorithm of surface residual materials on Si3N4 ceramics under longitudinal torsional ultrasonic grinding [J]. Ceramics International,2022,48(9):12028-12037. doi: 10.1016/j.ceramint.2022.01.060
    [2] KUMAR K, KIM M J, PARK Y J, et al. Twofold increase in Weibull modulus of hot-pressed Si3N4 ceramic by modified pressing profile [J]. Materials Today Communications,2022(32):103979. doi: 10.1016/j.mtcomm.2022.103979
    [3] MOZAMMEL M, MORSHEDO M S, MD K, et al. Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel [J]. Measurement,2018(118):43-51.
    [4] 全书海. 基于表面灰度图像的加工表面形貌分形特征研究 [D]. 武汉: 武汉理工大学, 2003.

    QUAN Shuhai. Research on fractal features of machined surface morphology based on surface grayscale images [D]. Wuhan: Wuhan University of Technology, 2003.
    [5] 李静, 尹衍升, 马来鹏, 等. 分形理论在陶瓷材料断裂行为中的应用 [J]. 稀有金属材料与工程,2007(S1):707-710.

    LI Jing, YIN Yansheng, MA Laipeng, et al. Application of fractal theory in the fracture behavior of ceramic materials [J]. Rare Metal Materials and Engineering,2007(S1):707-710.
    [6] 奚欣欣, 丁文锋, 傅玉灿, 等. 颗粒增强钛基复合材料高速磨削表面分形分析 [J]. 金刚石与磨料磨具工程,2014,34(6):26-29, 33.

    XI Xinxin, DING Wenfeng, FU Yucan, et al. Surface fractal analysis of particle reinforced titanium matrix composites during high-speed grinding [J]. Diamond and Abrasives Engineering,2014,34(6):26-29, 33.
    [7] 邹明清. 分形理论的若干应用 [D]. 湖北: 华中科技大学, 2007.

    ZOU Mingqing. Several applications of fractal theory [D]. Hubei: Huazhong University of Science and Technology, 2007.
    [8] 吴丁贵. 基于分形几何理论表面粗糙度测量系统的研究 [D]. 厦门: 厦门大学, 2014.

    WU Dinggui . Research on surface roughness measurement system based on fractal geometry theory [D]. Xiamen: Xiamen University, 2014.
    [9] 张彦斌, 林滨, 梁小虎, 等. 基于分形理论表征工程陶瓷磨削表面 [J]. 硅酸盐学报,2013,41(11):1558-1563.

    ZHANG Yanbin, LIN Bin, LIANG Xiaohu, et al. Characterization of engineering ceramic grinding surface based on fractal theory [J]. Journal of Silicates,2013,41(11):1558-1563.
    [10] NI X, SUN J, MA C, et al. Wear model of a mechanical seal based on piecewise fractal theory [J]. Fractal and Fractional,2023,7(3):251. doi: 10.3390/fractalfract7030251
    [11] 王洪娇, 秦襄培. 涂层表面形貌的分形表征研究 [J]. 机械,2020,47(11):71-75. doi: 10.3969/j.issn.1006-0316.2020.11.011

    WANG Hongjiao, QIN Xiangpei. Fractal characterization of coating surface morphology [J]. Machinery,2020,47(11):71-75. doi: 10.3969/j.issn.1006-0316.2020.11.011
    [12] SHAO C X, GUO H, MENG S H, et al. Characterization of ceramic thermal shock cracks based on the multifractal spectrum [J]. Fractal and Fractional,2022,6(10):539. doi: 10.3390/fractalfract6100539
    [13] 宋伟杰, 庞弘阳, 关山, 等. 基于多重分形谱参数的刀具磨损状态特征提取 [J]. 东北电力大学学报,2019,39(1):35-40.

    SONG Weijie, PANG Hongyang, GUAN Shan, et al. Feature extraction of tool wear state based on multifractal spectral parameters [J]. Journal of Northeast Electric Power University,2019,39(1):35-40.
    [14] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱 [J]. 材料导报,2020,34(16):16140-16143. doi: 10.11896/cldb.19070257

    XU Shanhua, XIA Min. fractal dimension and multifractal spectrum of corroded steel surface [J]. Materials Herald,2020,34(16):16140-16143. doi: 10.11896/cldb.19070257
    [15] 董中林, 汪祚远, 施毅, 等. 基于多重分形谱的粗糙模拟表面分析 [J]. 真空,2016(6):59-62.

    DONG Zhonglin, WANG Zuoyuan, SHI Yi, et al. Rough simulation surface analysis based on multifractal spectra [J]. Vacuum,2016(6):59-62.
    [16] 王和旭. Si3N4 陶瓷旋转超声磨削表面摩擦磨损特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2015.

    WANG Hexu. Study on the surface friction and wear characteristics of Si3N4 ceramic during rotary ultrasonic grinding [D]. Harbin: Harbin Engineering University, 2015.
    [17] 魏士亮. Si3N4旋转超声磨削加工表面微观形貌创成机理及优化技术 [D]. 哈尔滨: 哈尔滨工程大学, 2016.

    WEI Shiliang. Mechanism and optimization technology of surface micromorphology formation in Si3N4 rotary ultrasonic grinding process [D]. Harbin: Harbin Engineering University, 2016.
    [18] 樊福梅, 梁平, 吴庚申. 基于分形盒维数的汽轮机转子振动故障诊断的实验研究 [J]. 核动力工程,2006(1):85-89.

    FAN Fumei, LIANG Ping, WU Gengshen. Experimental study on fault diagnosis of steam turbine rotor vibration based on fractal box dimension [J]. Nuclear Power Engineering,2006(1):85-89.
    [19] 淦犇, 黄宜坚. 铣削加工表面轮廓的几何分形特征 [J]. 华侨大学学报,2010,31(4):371-377.

    GAN Ben, HUANG Yijian. Geometric fractal features of surface profile in milling [J]. Journal of Huaqiao University,2010,31(4):371-377.
    [20] 王雯朝. 加工表面形貌特征仿真与切削参数影响规律研究 [D]. 陕西: 西安理工大学, 2016.

    WANG Wenchao. Research on the simulation of surface morphology characteristics and the influence of cutting parameters in nachining [D] Shanxi: Xi’an University of Technology, 2016.
    [21] MIAO B, WANG X, Li H. Quantitative analysis of infrared thermal images in rock fractures based on multi-fractal theory [J]. Sustainability,2022,14(11):6543. doi: 10.3390/su14116543
    [22] 杨红平, 傅卫平, 王雯, 等. 基于分形几何与接触力学理论的结合面法向接触刚度计算模型 [J]. 机械工程学报,2013,49(1):102-107. doi: 10.3901/JME.2013.01.102

    YANG Hongping, FU Weiping, WANG Wen, et al. Calculation model of normal contact stiffness of joint surface based on fractal geometry and contact mechanics theory [J]. Journal of Mechanical Engineering,2013,49(1):102-107. doi: 10.3901/JME.2013.01.102
    [23] 周兴林, 肖神清, 刘万康, 等. 沥青路面表面纹理的多重分形特征及其磨光行为 [J]. 东南大学学报(自然科学版),2018,48(1):175-180. doi: 10.3969/j.issn.1001-0505.2018.01.027

    ZHOU Xinglin, XIAO Shenqing, LIU Wankang, et al. Multifractal characteristics and polishing behavior of asphalt pavement surface texture [J]. Journal of Southeast University (Natural Science Edition),2018,48(1):175-180. doi: 10.3969/j.issn.1001-0505.2018.01.027
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  79
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 修回日期:  2023-08-25
  • 录用日期:  2023-09-08
  • 网络出版日期:  2024-06-28
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回