Surface micromorphology of Si3N4 ceramic by rotating ultrasonic grinding based on fractal theory
-
摘要:
为了研究旋转超声磨削Si3N4陶瓷表面的微观形貌,基于分形理论研究不同加工参数下Si3N4陶瓷表面微观形貌的变化。设计旋转超声磨削Si3N4陶瓷正交试验,对比分析不同加工参数对Si3N4陶瓷表面分形维数和多重分形谱的影响,并设计单因素试验研究不同加工参数下Si3N4陶瓷表面的粗糙度、分形维数和多重分形谱。结果表明:旋转超声磨削Si3N4陶瓷表面时,分形维数能更好地表征其加工表面的缺陷状态,多重分形谱则能更好地表征其加工表面缺陷的起伏程度变化。
Abstract:To study the surface morphology of Si3N4 ceramics using rotary ultrasonic grinding, changes in the surface morphology under different machining parameters were analyzed based on fractal theory. Orthogonal experiments were designed to compare and analyze the effects of various processing parameters on the fractal dimensions and multifractal spectra of the Si3N4 ceramic surface. Additionally, single-factor experiments were conducted to study the roughness, fractal dimensions, and multifractal spectra of the Si3N4 ceramic surface under different processing parameters. The results show that fractal dimensions can effectively characterize the defect state of the processed surface of Si3N4 ceramics during rotary ultrasonic grinding, while multifractal spectra can better represent the degree of fluctuation in surface defects.
-
Key words:
- rotary ultrasonic grinding /
- Si3N4 ceramics /
- fractal dimension /
- multifractal spectrum /
- microstructure
-
表 1 热压烧结Si3N4陶瓷机械性能
Table 1. Mechanical properties of hot-pressing sintered Si3N4 ceramics
参数 取值 密度 ρ / (g·cm−3) 3.21 硬度 H / GPa 16.5 断裂韧性 KIC / (MPa·cm−1/2) 7.8 抗压强度 σ / MPa 1 200 弹性模量 E / GPa 305 表 2 因素和水平表
Table 2. Factor and level table
水平 因素 主轴转速
n / (r·min−1)进给速度
V / (mm·min−1)切削深度
ap / μm振动功率
P / %1 3 000 50 30 30 2 4 000 80 45 50 3 5 000 110 60 70 4 6 000 130 75 90 表 3 试验方案
Table 3. Test scheme
试验
组号主轴转速
n / (r·min−1)进给速度
V / (mm·min−1)切削深度
ap / μm振动功率
P / %1 3 000 50 30 30 2 5 000 80 30 70 3 6 000 130 30 90 4 4 000 80 30 50 5 4 000 130 60 30 6 6 000 110 45 30 7 5 000 80 75 30 8 3 000 130 75 70 9 6 000 50 75 50 10 3 000 110 60 50 11 4 000 110 75 90 12 4 000 50 45 70 13 5 000 50 60 90 14 5 000 130 45 50 15 6 000 80 60 70 16 3 000 80 45 90 表 4 表面粗糙度、分形维数和多重分形谱的方差分析表
Table 4. Table of variance analysis of surface roughness, fractal dimension and multifractal spectrum
影响因素 因变量 均方值 F值 显著性 主轴转速 n / (r·min−1) Ra 0.032 103.648 0.002 D 8.506 20.296 0.017 Δa 0.001 10.007 0.045 Δf(a) 0.000 2.548 0.231 进给速度 V / (mm·min−1) Ra 0.005 16.457 0.023 D 0.001 146.496 0.001 Δa 0.006 102.333 0.002 Δf(a) 0.001 22.197 0.015 切削深度 ap / μm Ra 0.003 9.946 0.046 D 3.456 8.246 0.058 Δa 0.000 3.607 0.160 Δf(a) 0.000 5.063 0.108 振动功率 P / % Ra 0.000 1.023 0.493 D 0.000 68.564 0.003 Δa 0.001 18.185 0.020 Δf(a) 7.743 1.784 0.323 -
[1] ZHANG Z, SHI K, HUANG X, et al. Development of a probabilistic algorithm of surface residual materials on Si3N4 ceramics under longitudinal torsional ultrasonic grinding [J]. Ceramics International,2022,48(9):12028-12037. doi: 10.1016/j.ceramint.2022.01.060 [2] KUMAR K, KIM M J, PARK Y J, et al. Twofold increase in Weibull modulus of hot-pressed Si3N4 ceramic by modified pressing profile [J]. Materials Today Communications,2022(32):103979. doi: 10.1016/j.mtcomm.2022.103979 [3] MOZAMMEL M, MORSHEDO M S, MD K, et al. Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel [J]. Measurement,2018(118):43-51. [4] 全书海. 基于表面灰度图像的加工表面形貌分形特征研究 [D]. 武汉: 武汉理工大学, 2003.QUAN Shuhai. Research on fractal features of machined surface morphology based on surface grayscale images [D]. Wuhan: Wuhan University of Technology, 2003. [5] 李静, 尹衍升, 马来鹏, 等. 分形理论在陶瓷材料断裂行为中的应用 [J]. 稀有金属材料与工程,2007(S1):707-710.LI Jing, YIN Yansheng, MA Laipeng, et al. Application of fractal theory in the fracture behavior of ceramic materials [J]. Rare Metal Materials and Engineering,2007(S1):707-710. [6] 奚欣欣, 丁文锋, 傅玉灿, 等. 颗粒增强钛基复合材料高速磨削表面分形分析 [J]. 金刚石与磨料磨具工程,2014,34(6):26-29, 33.XI Xinxin, DING Wenfeng, FU Yucan, et al. Surface fractal analysis of particle reinforced titanium matrix composites during high-speed grinding [J]. Diamond and Abrasives Engineering,2014,34(6):26-29, 33. [7] 邹明清. 分形理论的若干应用 [D]. 湖北: 华中科技大学, 2007.ZOU Mingqing. Several applications of fractal theory [D]. Hubei: Huazhong University of Science and Technology, 2007. [8] 吴丁贵. 基于分形几何理论表面粗糙度测量系统的研究 [D]. 厦门: 厦门大学, 2014.WU Dinggui . Research on surface roughness measurement system based on fractal geometry theory [D]. Xiamen: Xiamen University, 2014. [9] 张彦斌, 林滨, 梁小虎, 等. 基于分形理论表征工程陶瓷磨削表面 [J]. 硅酸盐学报,2013,41(11):1558-1563.ZHANG Yanbin, LIN Bin, LIANG Xiaohu, et al. Characterization of engineering ceramic grinding surface based on fractal theory [J]. Journal of Silicates,2013,41(11):1558-1563. [10] NI X, SUN J, MA C, et al. Wear model of a mechanical seal based on piecewise fractal theory [J]. Fractal and Fractional,2023,7(3):251. doi: 10.3390/fractalfract7030251 [11] 王洪娇, 秦襄培. 涂层表面形貌的分形表征研究 [J]. 机械,2020,47(11):71-75. doi: 10.3969/j.issn.1006-0316.2020.11.011WANG Hongjiao, QIN Xiangpei. Fractal characterization of coating surface morphology [J]. Machinery,2020,47(11):71-75. doi: 10.3969/j.issn.1006-0316.2020.11.011 [12] SHAO C X, GUO H, MENG S H, et al. Characterization of ceramic thermal shock cracks based on the multifractal spectrum [J]. Fractal and Fractional,2022,6(10):539. doi: 10.3390/fractalfract6100539 [13] 宋伟杰, 庞弘阳, 关山, 等. 基于多重分形谱参数的刀具磨损状态特征提取 [J]. 东北电力大学学报,2019,39(1):35-40.SONG Weijie, PANG Hongyang, GUAN Shan, et al. Feature extraction of tool wear state based on multifractal spectral parameters [J]. Journal of Northeast Electric Power University,2019,39(1):35-40. [14] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱 [J]. 材料导报,2020,34(16):16140-16143. doi: 10.11896/cldb.19070257XU Shanhua, XIA Min. fractal dimension and multifractal spectrum of corroded steel surface [J]. Materials Herald,2020,34(16):16140-16143. doi: 10.11896/cldb.19070257 [15] 董中林, 汪祚远, 施毅, 等. 基于多重分形谱的粗糙模拟表面分析 [J]. 真空,2016(6):59-62.DONG Zhonglin, WANG Zuoyuan, SHI Yi, et al. Rough simulation surface analysis based on multifractal spectra [J]. Vacuum,2016(6):59-62. [16] 王和旭. Si3N4 陶瓷旋转超声磨削表面摩擦磨损特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2015.WANG Hexu. Study on the surface friction and wear characteristics of Si3N4 ceramic during rotary ultrasonic grinding [D]. Harbin: Harbin Engineering University, 2015. [17] 魏士亮. Si3N4旋转超声磨削加工表面微观形貌创成机理及优化技术 [D]. 哈尔滨: 哈尔滨工程大学, 2016.WEI Shiliang. Mechanism and optimization technology of surface micromorphology formation in Si3N4 rotary ultrasonic grinding process [D]. Harbin: Harbin Engineering University, 2016. [18] 樊福梅, 梁平, 吴庚申. 基于分形盒维数的汽轮机转子振动故障诊断的实验研究 [J]. 核动力工程,2006(1):85-89.FAN Fumei, LIANG Ping, WU Gengshen. Experimental study on fault diagnosis of steam turbine rotor vibration based on fractal box dimension [J]. Nuclear Power Engineering,2006(1):85-89. [19] 淦犇, 黄宜坚. 铣削加工表面轮廓的几何分形特征 [J]. 华侨大学学报,2010,31(4):371-377.GAN Ben, HUANG Yijian. Geometric fractal features of surface profile in milling [J]. Journal of Huaqiao University,2010,31(4):371-377. [20] 王雯朝. 加工表面形貌特征仿真与切削参数影响规律研究 [D]. 陕西: 西安理工大学, 2016.WANG Wenchao. Research on the simulation of surface morphology characteristics and the influence of cutting parameters in nachining [D] Shanxi: Xi’an University of Technology, 2016. [21] MIAO B, WANG X, Li H. Quantitative analysis of infrared thermal images in rock fractures based on multi-fractal theory [J]. Sustainability,2022,14(11):6543. doi: 10.3390/su14116543 [22] 杨红平, 傅卫平, 王雯, 等. 基于分形几何与接触力学理论的结合面法向接触刚度计算模型 [J]. 机械工程学报,2013,49(1):102-107. doi: 10.3901/JME.2013.01.102YANG Hongping, FU Weiping, WANG Wen, et al. Calculation model of normal contact stiffness of joint surface based on fractal geometry and contact mechanics theory [J]. Journal of Mechanical Engineering,2013,49(1):102-107. doi: 10.3901/JME.2013.01.102 [23] 周兴林, 肖神清, 刘万康, 等. 沥青路面表面纹理的多重分形特征及其磨光行为 [J]. 东南大学学报(自然科学版),2018,48(1):175-180. doi: 10.3969/j.issn.1001-0505.2018.01.027ZHOU Xinglin, XIAO Shenqing, LIU Wankang, et al. Multifractal characteristics and polishing behavior of asphalt pavement surface texture [J]. Journal of Southeast University (Natural Science Edition),2018,48(1):175-180. doi: 10.3969/j.issn.1001-0505.2018.01.027