Effects of the ratio of binder and the ratio of cBN particle size on the microstructure and properties of PcBN composites
-
摘要: 在高温高压条件下制备了聚晶立方氮化硼(PcBN)复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等研究了结合剂配比和立方氮化硼(cBN)粒度对PcBN复合材料的成分、微观结构、显微硬度和磨耗比的影响。实验结果表明:在压力5.5 GPa,温度1400 ℃,保温10 min的烧结条件下,当V(TiN0.3)∶V(AlN)=70∶30时,PcBN复合材料性能较为优异,硬度最高达到22.7 GPa,磨耗比达到149.2;当PcBN复合材料中cBN粒度组合为V(0.5~1 μm)∶V(2~5 μm)∶V(5~10 μm) =3∶5∶2时,颗粒之间的堆积密度达到最高,性能也达到最优。Abstract: Polycrystalline cubic boron nitride composites were prepared under high-temperature and high-pressure conditions. The effects of bonding agent ratio and cBN particle size on the composition, microstructure, microhardness, and abrasive ratios of the PcBN composites were investigated using X-ray diffraction (XRD), field scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The experimental results showed that the PcBN composites performed better under sintering conditions of 5.5 GPa, 1400 ℃, and a 10-minute holding time, achieving a hardness of up to 22.7 GPa and an abrasion ratio of 149.2 at V(TiN0.3)∶V(AlN)=70∶30. Moreover, when the particle size combination of cBN in PcBN composites is (0.5~1) μm:(2~5) μm:(5~10) μm = 3:5:2, the packing density between particles reaches its peak, resulting in optimal performance.
-
Key words:
- PcBN composite /
- high pressure and high temperature (HPHT) /
- binder /
- particle size
-
表 1 PcBN复合材料样品编号以及原料配比
Table 1. PcBN composite sample numbers and raw material ratios
编号 cBN粒度组合 结合剂配比 S1 V1∶V2∶V3=
5∶3∶2VTiN0.3∶VAlN=
70∶30S2 VTiN0.3∶VAlN=
60∶40V1∶V2∶V3=
5∶3∶2S3 V1∶V2∶V3=
4∶4∶2VTiN0.3∶VAlN∶VTaC=
64∶27∶9V1∶V2∶V3=
3∶5∶2V1∶V2∶V3=
5∶3∶2S4 V1∶V2∶V3=
4∶4∶2VTiN0.3∶VAlN∶VWC∶VVC=
56∶24∶10∶10V1∶V2∶V3=
3∶5∶2V1∶V2∶V3=
5∶3∶2S5 V1∶V2∶V3=
4∶4∶2VTiN0.3∶VAlN∶VTaC∶VNbC=
62.3∶26.7∶9.0∶2.0V1∶V2∶V3=
3∶5∶2表 2 eZAF 智能定量结果(物质的量分数)
Table 2. eZAF intelligent quantification results (mole fraction)
元素 点1 点 2 点 3 点 4 点 5 点 6 B K 38.43 0.44 28.31 40.80 7.89 22.12 C K 5.91 5.67 19.29 36.71 7.97 16.02 N K 48.03 35.35 45.71 0.08 43.72 28.67 Al K 4.26 56.60 3.15 5.38 35.73 3.53 Ti K 3.33 1.90 3.46 16.85 4.61 29.08 Ta L 0.03 0.04 0.07 0.17 0.08 0.57 -
[1] WANG W J, LI Z H, ZHU Y M, et al. Effect of diamond additive on the properties of cBN composites with Al–Si as binder by HTHP sintering [J]. Ceramics International,2022,48(19):28830-28834. doi: 10.1016/j.ceramint.2022.03.028 [2] WANG S Y, LI Z H, ZHU Y M, et al. Enhanced mechanical properties of cBN-Al-Si3N4 composites by introducing diamond [J]. Diamond and Related Materials,2022,121:108808. doi: 10.1016/j.diamond.2021.108808 [3] CHEN L, STAHL J E, ZHAO W, et al. Assessment on abrasiveness of high chromium cast iron material on the wear performance of PCBN cutting tools in dry machining [J]. Journal of Materials Processing Technology,2018,255:110-120. doi: 10.1016/j.jmatprotec.2017.11.054 [4] KUMAR R, ANTONOV M, KLIMCZYK P, et al. Effect of cBN content and additives on sliding and surface fatigue wear of spark plasma sintered Al2O3-cBN composites [J]. Wear,2022(494/495):204250. doi: 10.1016/j.wear.2022.204250 [5] JI H L, LI Z H, LIU M. Structural and mechanical properties of cBN composites by regulating particle size distribution and holding time [J]. International Journal of Refractory Metals and Hard Materials,2021,100:105635. doi: 10.1016/j.ijrmhm.2021.105635 [6] LIU Y, SUN A L, ZHONG S L, et al. Effect of Al Ti content on mechanical properties of in-situ synthesized PcBN composites [J]. Diamond and Related Materials,2020,109:108068. doi: 10.1016/j.diamond.2020.108068 [7] ZOU Q, WU H Y, LI Y G, et al. Effects of carbon nanotubes and sintering parameters on microstructure and properties of PCD [J]. Diamond and Related Materials,2022,128:109293. doi: 10.1016/j.diamond.2022.109293 [8] MO P C, CHEN C, JIA G, et al. Effect of tungsten content on microstructure and mechanical properties of PCBN synthesized in cBN-Ti-Al-W system [J]. International Journal of Refractory Metals and Hard Materials,2020,87:105138. doi: 10.1016/j.ijrmhm.2019.105138 [9] SLIPCHENKO K, BUSHLYA V, STRATIICHUK D, et al. Multicomponent binders for PcBN performance enhancement in cutting tool applications [J]. Journal of the European Ceramic Society,2022,42(11):4513-4527. doi: 10.1016/j.jeurceramsoc.2022.04.022 [10] 陈俊云, 孙磊, 靳田野, 等. 无黏结剂层状BN增韧cBN刀具材料的研究 [J]. 无机材料学报,2022,37(6):623-628. doi: 10.15541/jim20210300CHEN Junyun, SUN Lei, JIN Tianye, et al. Binderless layered BN toughened cBN for ultra-precision cutting [J]. Journal of Inorganic Materials,2022,37(6):623-628. doi: 10.15541/jim20210300 [11] CHEN S, FAN H Z, SU Y F, et al. Influence of binder systems on sintering characteristics, microstructures, and mechanical properties of PcBN composites fabricated by SPS [J]. Journal of Advanced Ceramics,2022,11(2):321-330. doi: 10.1007/s40145-021-0536-4 [12] GORDON S, ROA J J, RODRIGUEZ-SUAREZ T, et al. Influence of microstructural assemblage of the substrate on the adhesion strength of coated PcBN grades [J]. Ceramics International,2022,48(15):22354-22363. doi: 10.1016/j.ceramint.2022.04.236 [13] 王艳芝, 张旺玺, 孙长红, 等. 氮化硼系列材料的合成制备及应用研究进展 [J]. 陶瓷学报,2018,39(6):661-671. doi: 10.13957/j.cnki.tcxb.2018.06.002WANG Yanzhi, ZHANG Wangxi, SUN Changhong, et al. The development of the applications and synthesis of boron nitride materials [J]. Journal of Ceramics,2018,39(6):661-671. doi: 10.13957/j.cnki.tcxb.2018.06.002 [14] CHEN C, MO P C, CHEN J R, et al. Effects of different binder systems on the reaction mechanism, microstructure and mechanical properties of PcBN composites [J]. Diamond and Related Materials,2023,134:109797. doi: 10.1016/j.diamond.2023.109797 [15] 邓华, 潘天浩, 张志超, 等. 共价键化合物陶瓷结合剂对干切削PcBN刀具复合材料的影响 [J]. 超硬材料工程,2017,29(3):1-12. doi: 10.3969/j.issn.1673-1433.2017.03.001DENG Hua, PAN Tianhao, ZHANG Zhichao, et al. The influence of covalent compound ceramic bond on composite materials of PcBN cutting tools for drycutting [J]. Superhard Material Engineering,2017,29(3):1-12. doi: 10.3969/j.issn.1673-1433.2017.03.001 [16] CHU D L, MA H G, ZHANG Z F, et al. Synthesis and characterization of cubic boron nitride (Al)-Al2O3 composites under high pressure and high temperature conditions [J]. International Journal of Refractory Metals and Hard Materials,2022,106:105876. doi: 10.1016/j.ijrmhm.2022.105876 [17] 梁宝岩, 张旺玺, 冯燕翔, 等. 立方氮化硼用量及粒度对其同钛铝碳结合剂的反应程度的影响 [J]. 金刚石与磨料磨具工程,2016,36(5):38-41. doi: 10.13394/j.cnki.jgszz.2016.5.0007LIANG Baoyan, ZHANG Wangxi, FENG Yanxiang, et al. Fabrication and microstructure analys is of Ti3AlC2-CBN composites [J]. Diamond & Abrasives Engineering,2016,36(5):38-41. doi: 10.13394/j.cnki.jgszz.2016.5.0007 [18] WANG H, DENG F M, ZHANG Z W, et al. Study on the properties and fracture mode of pure polycrystalline cubic boron nitride with different particle sizes [J]. International Journal of Refractory Metals and Hard Materials,2021,95:105446. doi: 10.1016/j.ijrmhm.2020.105446 [19] 范文捷, 刘芳, 董艳丽. CBN粒度及组装方式对PCBN性能影响的研究 [J]. 金刚石与磨料磨具工程,2009,4(2):67-73. doi: 10.13394/j.cnki.jgszz.2009.02.017FAN Wenjie, LIU Fang, DONG Yanli. Effect of grain size of CBN and ssemblmodeon characteristics of PCBN [J]. Diamond & Abrasives Engineering,2009,4(2):67-73. doi: 10.13394/j.cnki.jgszz.2009.02.017 [20] WU J K, ZHANG Z C, WANG H K, et al. High-pressure synthesis of tungsten carbide–cubic boron nitride (WC–cBN) composites: Effect of cBN particle size and volume fraction on their microstructure and properties [J]. International Journal of Refractory Metals and Hard Materials,2023,110:106037. doi: 10.1016/j.ijrmhm.2022.106037 [21] XU S, WANG M Z, QIAO L N, et al. Enhancing the sintering ability of TiNx by introduction of nitrogen vacancy defects [J]. Ceramics International,2015,41(8):9514-9520. doi: 10.1016/j.ceramint.2015.04.009 [22] 苏君, 杨帆. 烧结助剂含量对PcBN复合材料显微结构和力学性能的影响 [J]. 中国陶瓷,2022,58(2):32-36. doi: 10.16521/j.cnki.issn.1001-9642.2022.02.005SU Jun, YANG Fan. Effect of sintering intering content on microstructure and mechanical property of PcBN composites [J]. China Ceramics,2022,58(2):32-36. doi: 10.16521/j.cnki.issn.1001-9642.2022.02.005 [23] WANG Z W, LI Y G, ZOU Q, et al. Effect of sintering parameters on microstructure and properties of nanopolycrystalline diamond bulks synthesized from onion-like carbon [J]. Diamond and Related Materials,2021,111:108233. doi: 10.1016/j.diamond.2020.108233 [24] 陈超, 莫培程, 林峰, 等. cBN-TiN-Al合成PcBN复合片及其性能研究 [J]. 中国陶瓷,2019,55(7):36-41. doi: 10.16521/j.cnki.issn.1001-9642.2019.07.006CHEN Chao, MO Peicheng, LIN Feng, et al. Synthesis of PcBN composite by cBN-TiN-Al and performance research [J]. China Ceramics,2019,55(7):36-41. doi: 10.16521/j.cnki.issn.1001-9642.2019.07.006 [25] 邓华, 邢英, 王明智, 等. PcBN烧结体中TiN0.3/AlN与cBN的界面关系研究 [J]. 金刚石与磨料磨具工程,2016,36(3):38-42. doi: 10.13394/j.cnki.jgszz.2016.3.0008DENG Hua, XING Ying, WANG Mingzhi, et al. Research on the interface relation between TiN0.3/AlN and cBN in PcBN sintering body [J]. Diamond & Abrasives Engineering,2016,36(3):38-42. doi: 10.13394/j.cnki.jgszz.2016.3.0008 [26] 谢辉, 冯飞, 方海江, 等. 不同组分cBN-TiC-Al材料对PcBN性能的影响 [J]. 金刚石与磨料磨具工程,2013,33(1):31-35. doi: 10.13394/j.cnki.jgszz.2013.01.010XIE Hui, FENG Fei, FANG Haijiang, et al. Influence of ratios of cBN-TiC-Al on PCBN properties [J]. Diamond & Abrasives Engineering,2013,33(1):31-35. doi: 10.13394/j.cnki.jgszz.2013.01.010 [27] 李工, 戴凤祥, 张翼飞, 等. Al系高熵合金高温氧化性能研究进展 [J]. 燕山大学学报,2021,45(3):189-201. doi: 10.3969/j.issn.1007-791X.2021.03.001LI Gong, DAI Fengxiang, ZHANG Yifei, et al. Research progress of high-temperture oxidation properties of Al-based high entropy alloys [J]. Journal of Yanshan University,2021,45(3):189-201. doi: 10.3969/j.issn.1007-791X.2021.03.001 [28] 邹芹, 李园园, 李艳国. 铁基自润滑复合材料增强的研究进展与展望 [J]. 燕山大学学报,2021,45(5):377-386. doi: 10.3969/j.issn.1007-791X.2021.05.001ZOU Qin, LI Yuanyuan, LI Yanguo. Progress and prospect of iron-based self-lubricating composites reinforcement [J]. Journal of Yanshan University,2021,45(5):377-386. doi: 10.3969/j.issn.1007-791X.2021.05.001 [29] 邹芹, 关勇, 李艳国, 等. TiAl合金及其复合材料的研究进展与发展趋势 [J]. 燕山大学学报,2020,44(2):95-107. doi: 10.3969/j.issn.1007-791X.2020.02.001ZOU Qin, GUAN Yong, LI Yanguo, et al. Advances and perspectives of TiAl alloy and its composites [J]. Journal of Yanshan University,2020,44(2):95-107. doi: 10.3969/j.issn.1007-791X.2020.02.001 [30] XU S, WANG M Z, QIAO L N, et al. Influence of nitrogen vacancy defects incorporation on densification behaviour of spark plasma sintered non-stoichiometric TiN1−x [J]. Advances in applied ceramics,2015,114(5):256-260. doi: 10.1179/1743676114Y.0000000216 [31] 韦家新, 林峰, 冯吉福. 影响立方氮化硼复合片耐磨性的工艺因素研究 [J]. 超硬材料工程,2006(3):16-18.WEI Jiaxin, LIN Feng, FENG Jifu. Technological factors influencing wear resistance of PCBN [J]. Superhard Material Engineering,2006(3):16-18. [32] ZOU Q, DONG P H, LI Y G, et al. Preparation and characterization of PcBN composites with high entropy ceramic bonding [J]. Diamond and Related Materials,2023,131:109536. doi: 10.1016/j.diamond.2022.109536 [33] 张立, 王喆, 陈述, 等. 过渡族金属碳化物在WC-Co硬质合金中的界面偏析与固溶行为 [J]. 硬质合金,2014,31(1):49-59.ZHANG LI, WANG Zhe, CHEN Shu, et al. Boundary segregation and solid solution behaviors of transitional metal carbides in WC-Co cemented carbides [J]. Cemented Carbides,2014,31(1):49-59. [34] 邹芹, 李壮, 李艳国, 等. 中熵碳化物陶瓷TiC0.4/VC/NbC结合的WC基硬质合金合成与性能 [J]. 中国有色金属学报,2022,6(33):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353ZOU Qin, LI Zhang, LI Yanguo, et al. Synthesis and properties of WC-based cemented carbide combined with TiC0.4/VC/NbC medium entropy carbide ceramics [J]. The Chinese Journal of Nonferrous Metals,2022,6(33):1914-1923. doi: 10.11817/j.ysxb.1004.0609.2022-43353