CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于工业三维检测的点云配准技术研究进展

王水仙 邓朝晖 葛吉民 刘伟

王水仙, 邓朝晖, 葛吉民, 刘伟. 基于工业三维检测的点云配准技术研究进展[J]. 金刚石与磨料磨具工程, 2023, 43(3): 285-297. doi: 10.13394/j.cnki.jgszz.2022.0164
引用本文: 王水仙, 邓朝晖, 葛吉民, 刘伟. 基于工业三维检测的点云配准技术研究进展[J]. 金刚石与磨料磨具工程, 2023, 43(3): 285-297. doi: 10.13394/j.cnki.jgszz.2022.0164
WANG Shuixian, DENG Zhaohui, GE Jimin, LIU Wei. Research progress of point cloud registration technology based on industrial 3D inspection[J]. Diamond & Abrasives Engineering, 2023, 43(3): 285-297. doi: 10.13394/j.cnki.jgszz.2022.0164
Citation: WANG Shuixian, DENG Zhaohui, GE Jimin, LIU Wei. Research progress of point cloud registration technology based on industrial 3D inspection[J]. Diamond & Abrasives Engineering, 2023, 43(3): 285-297. doi: 10.13394/j.cnki.jgszz.2022.0164

基于工业三维检测的点云配准技术研究进展

doi: 10.13394/j.cnki.jgszz.2022.0164
基金项目: 湖南省自然科学省市联合基金(2021JJ50116);湖南省高新技术产业科技创新引领计划(2020GK2003);国家自然科学基金−浙江两化融合联合基金(U1809221)
详细信息
    通讯作者:

    邓朝晖,男,1968年生,博士、二级教授/博导。主要研究方向:智能磨削云平台、智能磨抛机器人、难加工材料绿色高效精密加工、新型超硬磨具制备及加工机理。E-mail:edeng0080@vip.sina.com

  • 中图分类号: TG58; TP311; TP391

Research progress of point cloud registration technology based on industrial 3D inspection

  • 摘要: 随着制造业的发展,所需零件逐渐向大尺寸、复杂形状、表面加工质量高等方向发展,且在加工过程中对零件质量进行检测是必不可少的环节。为提高质量检测的精度、速率以及自动化程度等,基于模型分析的三维检测取代了传统的手工检测和二维检测,成了工业检测领域的重要手段。点云配准作为三维检测中的关键环节,其精度直接影响检测结果的准确性。因此,对国内外学者在点云配准技术方面的主要研究成果进行综述,从算法原理出发,将目前的配准方法归纳为传统配准方法、基于仿生群智能优化算法的配准方法和基于深度学习的配准方法。详细介绍了各类方法的特点、优缺点、典型算法及其变体,总结了点云配准的技术难点并对未来的发展趋势进行了展望。

     

  • 图  1  三维检测方法的流程图

    Figure  1.  Flow chart of 3D detection method

    图  2  最近点对应的准则

    Figure  2.  Guidelines corresponding to the nearest point

    图  3  4PCS算法的空间拓扑结构

    Figure  3.  Spatial topological structure of 4PCS algorithm

    图  4  3DSC的球型空间

    Figure  4.  Spherical space of 3DSC

    图  5  关键点及其邻域点的空间结构图

    Figure  5.  Spatial structure diagram of key points and their neighborhood points

    图  6  布谷鸟搜索算法的流程图

    Figure  6.  Flow chart of CSA

    图  7  人工蜂群算法的流程图

    Figure  7.  Flow chart of ABC algorithm

    图  8  PointNet网络结构图

    Figure  8.  Structure diagram of PointNet

    图  9  CNN网络结构图

    Figure  9.  Structure diagram of CNN

    表  1  各类算法的归纳表

    Table  1.   Summary table of various algorithms

    分类算法
    类型
    代表算法优势劣势适用范围
    传统配准
    方法
    全局搜索ICP、4PCS等精度高、运算简单耗时、初始位姿要求高,
    容易陷入局部最优
    精度要求较高,模型数据量较少,点云重叠率较高
    局部特征
    描述
    PFH、FPFH、3DSC等精度高、抗噪性强运算复杂、耗时点云局部特征明显,效率要求较低,也可应用于存在点云遮挡的模型的配准
    概率学统计NDT、CPD等抗噪性强、效率高容易陷入局部最优数据量庞大且配准精度要求较高
    仿生群智能优化算法布谷鸟搜索算法CSA、MACSA、ICSA等参数少、模型简单、效率高、全局搜索能力强搜索方式具有盲目性,无法兼具全局搜索和局部寻优
    能力
    简洁、快速、高精度的配准,也可应用于点云缺失、部分重合、点云遮挡的模型的配
    人工蜂群
    算法
    ABC、SAABC、SAABC等算法灵活性强、全局搜索能力强、搜索性能好搜索速度不均匀,表现为早熟收敛
    深度学习
    方法
    端到端PointNet、CNN、DeepVCP等效率高、精度高、智能化程度高对噪声和密度差敏感配准精度要求很高,结构复杂,形状多样
    部分学习PointNetLk、PCRNet、语义辅助正态分布变换等灵活性强、收敛速度快、鲁棒性强运算复杂
    下载: 导出CSV
  • [1] 李文辉, 温学杰, 李秀红, 等. 航空发动机叶片再制造技术的应用及其发展趋势 [J]. 金刚石与磨料磨具工程,2021,41(4):8-18.

    LI Wenhui, WEN Xuejie, LI Xiuhong, et al. Application and development trend of aero-engine blade remanufacturing technology [J]. Diamond & Abrasives Engineering,2021,41(4):8-18.
    [2] 石广丰, 王雪, 王淑坤, 等. 基于机器视觉的金刚石原石检测系统 [J]. 金刚石与磨料磨具工程,2019(6):7-12.

    SHI Guangfeng, WANG Xue, WANG Shukun, et al. Diamond raw detection system based on machine vision [J]. Diamond & Abrasives Engineering,2019(6):7-12.
    [3] 李雷辉. 基于3D视觉传感器的工业零件表面质量检测关键技术研究 [D]. 天津: 天津理工大学, 2021.

    LI Leihui. Research o key techniques of the industrial parts, surface inspection based on 3d vision [D]. Tianjin: Tianjin University of Technology, 2021.
    [4] 肖明, 鲍永亮, 颜仲新. 基于点特征的图像配准方法综述 [J]. 兵工学报,2015,36(S2):326-340.

    XIAO Ming, BAO Yongliang, YAN Zhongxin. Point feature-based image registration: A survey [J]. Acta Armamentarii,2015,36(S2):326-340.
    [5] LAI J Y, UENG W D, YAO C Y. Registration and data merging for multiple sets of scan data [J]. International Journal of Advanced Manufacturing Technology,1999,15(1):54-63. doi: 10.1007/s001700050039
    [6] POMERLEAU F, COLAS F, SIEGWART R. A review of point cloud registration algorithms for mobile robotics [J]. Foundations and Trends in Robotics,2015,4(1):1-104.
    [7] 张政. 点云数据配准算法研究 [D]. 济南: 山东大学, 2008.

    ZHANG Zheng. Research on registration algorithm of point cloud data [D]. Jinan: Shandong University, 2008.
    [8] CHENG L, CHEN S, LIU X, et al. Registration of laser scanning point clouds: A review [J]. Sensors,2018,18(5):1641. doi: 10.3390/s18051641
    [9] 张步. 三维激光点云数据配准研究 [D]. 西安: 西安科技大学, 2015.

    ZHANG Bu. Research on 3D laser poing cloud registration [D]. Xi'an: Xi'an University of Science and Technology, 2015
    [10] CHENG X, LI Z, ZHONG K, et al. An automatic and robust point cloud registration framework based on view-invariant local feature descriptors and transformation consistency verification [J]. Optics and Lasers in Engineering,2017,98:37-45. doi: 10.1016/j.optlaseng.2017.05.011
    [11] YANG J, QUAN S, WANG P, et al. Evaluating local geometric feature representations for 3D rigid data matching [J]. IEEE Transactions on Image Processing,2019,29:2522-2535. doi: 10.1109/TIP.2019.2959236
    [12] BESL P J, MCKAY N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256. doi: 10.1109/34.121791
    [13] CHEN Y, MEDIONI G. Object modeling by registration of multiple range images [J]. Image and Vision Computing,1992,10(3):145-155. doi: 10.1016/0262-8856(92)90066-C
    [14] RUSINKIEWICZ S. A symmetric objective function for ICP [J]. ACM Transactions on Graphics,2019,38(4):1-7.
    [15] 王建军, 卢云鹏, 张荠匀, 等. 实现激光点云高效配准的ICP优化及性能验证 [J]. 红外与激光工程,2021,50(10):309-315.

    WANG Jianjun, LU Yunpeng, ZHANG Jiyun, et al. Optimization and performance verification of high efficiency ICP registration for laser point clouds [J]. Infrared and Laser Engineering,2021,50(10):309-315.
    [16] LIU Y. Automatic registration of overlapping 3D point clouds using closest points [J]. Image and Vision Computing,2006,24(7):762-781. doi: 10.1016/j.imavis.2006.01.009
    [17] LIU Y. Constraints for closest point finding [J]. Pattern Recognition Letters,2008,29(7):841-851. doi: 10.1016/j.patrec.2007.12.004
    [18] GELFAND N, IKEMOTO L, RUSINKIEWICZ S, et al. Geometrically stable sampling for the ICP algorithm: Fourth international conference on 3-D digital imaging and modeling [C]. Banff: IEEE, 2003: 260-267.
    [19] WEIK S. Registration of 3-D partial surface models using luminance and depth information: International conference on recent advances in 3-D digital imaging and modeling [C]. Ottawa: IEEE, 1997: 93-100.
    [20] 任伟建, 高梦宇, 高铭泽, 等. 基于混合算法的点云配准方法研究 [J]. 吉林大学学报(信息科学版),2019,37(4):408-416.

    REN Weijian, GAO Mengyu, GAO Mingze, et al. Research on point cloud registration method based on hybrid algorithm [J]. Journal of Jilin University (Information Science Edition),2019,37(4):408-416.
    [21] 代许松, 花向红, 田朋举, 等. 一种基于轴向偏离比的点云配准方法 [J]. 测绘科学,2021,46(12):98-105.

    DAI Xusong, HUA Xianghong, TIAN Pengju, et al. A point cloud registration method based on axial deviation ratio [J]. Science of Surveying and Mapping,2021,46(12):98-105.
    [22] CHETVERIKOV D, STEPANOV D, KRSEK P. Robust euclidean alignment of 3D point sets: The trimmed iterative closest point algorithm [J]. Image and Vision Computing,2005,23(3):299-309. doi: 10.1016/j.imavis.2004.05.007
    [23] HAN B, WU W, WANG Y, et al. The semi-dense ICP algorithm based on the sift feature points neighborhood [J]. Journal of Physics: Conference Series, 2020, 1631: 12-58
    [24] AIGER D, MITRA N J, COHEN-OR D. 4-points congruent sets for robust pairwise surface registration [J]. ACM Transactions on Graphics,2008,27(3):1-10.
    [25] MELLADO N, AIGER D, MITRA N J. Super 4PCS fast global pointcloud registration via smart indexing [J]. Eurographics,2014,33(5):205-215.
    [26] 鲁铁定, 袁志聪, 郑坤. 结合尺度不变特征的Super 4PCS点云配准方法 [J]. 遥感信息,2019,34(5):15-20. doi: 10.3969/j.issn.1000-3177.2019.05.005

    LU Tieding, YUAN Zhicong, ZHENG Kun. Super 4PCS point cloud registration algorithm combining scale invariant features [J]. Remote Sensing Information,2019,34(5):15-20. doi: 10.3969/j.issn.1000-3177.2019.05.005
    [27] 陆军, 范哲君, 王婉佳. 点邻域信息加权的点云快速拼接算法 [J]. 计算机辅助设计与图形学学报,2019,31(7):1238-1246.

    LU Jun, FAN Zhejun, WANG Wanjia. Fast point cloud splicing algorithm based on weighted neighborhood information of points [J]. Journal of Computer-Aided Design & Computer Graphics,2019,31(7):1238-1246.
    [28] XU Z, XU E, ZHANG Z, et al. Multiscale sparse features embedded 4-points congruent sets for global registration of TLS point clouds [J]. IEEE Geoscience and Remote Sensing Letters,2018,16(2):286-290.
    [29] 刘世光, 王海荣, 刘锦. 快速四点一致性点云粗配准算法 [J]. 山东大学学报(工学版),2019,49(2):1-7.

    LIU Shiguang, WANG Hairong, LIU Jin. Fast 4-points congruent sets for coarse registration of 3D point cloud [J]. Journal of Shandong University (Engineering Science),2019,49(2):1-7.
    [30] 汪霞, 赵银娣, 王坚. 一种低重叠率激光点云的配准方法 [J]. 测绘科学,2018,43(12):130-136.

    WANG Xia, ZHAO Yindi, WANG Jian. A registration method of laser point cloud with low overlap [J]. Science of Surveying and Mapping,2018,43(12):130-136.
    [31] HUANG J, KWOK T H, ZHOU C. V4PCS: Volumetric 4PCS algorithm for global registration [J]. Journal of Mechanical Design, 2017, 139(11): 4037477.
    [32] DA SILVA J P, BORGES D L, DE BARROS VIDAL F. A dynamic approach for approximate pairwise alignment based on 4-points congruence sets of 3D points: 18th IEEE international conference on image processing [C]. Brussels: IEEE, 2011: 889-892.
    [33] BELONGIE S, MALIK J, PUZICHA J. Shape matching and object recognition using shape contexts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(4):509-522. doi: 10.1109/34.993558
    [34] RUSU R B, BLODOW N, MARTON Z C. Aligning point cloud views using persistent feature histograms: 2008 IEEE/RSJ international conference on intelligent robots and systems [C]. Nice: IEEE, 2008: 3384-3391.
    [35] FROME A, HUBER D, KOLLURI R, et al. Recognizing objects in range data using regional point descriptors [J]. Lecture Notes in Computer Science, 2004,3023(1):224-237.
    [36] 范莹, 白瑞林, 王秀平, 等. 改进型形状上下文的工件立体匹配方法 [J]. 激光技术,2016,40(6):814-819.

    FAN Ying, BAI Ruilin, WANG Xiuping, et al. Stereo matching algorithm of workpiece images based on improved shape context [J]. Laser Technology,2016,40(6):814-819.
    [37] 化春键, 熊雪梅, 陈莹. 基于形状上下文的工件边缘轮廓点匹配 [J]. 光电子·激光,2018,29(6):634-638.

    HUA Chunjian, XIONG Xuemei, CHEN Ying. Shape matching of workpiece edge based on shape context [J]. Journal of Optoelectronics·Laser,2018,29(6):634-638.
    [38] 郑丹晨, 韩敏. 基于改进典型形状上下文特征的形状识别方法 [J]. 计算机辅助设计与图形学学报,2013,25(2):215-220.

    ZHENG Danchen, HAN Min. Improved shape recognition method based on representative shape context [J]. Journal of Computer-Aided Design & Computer Graphics,2013,25(2):215-220.
    [39] 吴晓雨, 何彦, 杨磊, 等. 基于改进形状上下文特征的二值图像检索 [J]. 光学精密工程,2015,23(1):302-309. doi: 10.3788/OPE.20152301.0302

    WU Xiaoyu, HE Yan, YANG Lei, et al. Binary image retrieval based on improved shape context algorithm [J]. Optics and Precision Engineering,2015,23(1):302-309. doi: 10.3788/OPE.20152301.0302
    [40] 赵键, 孙即祥, 李智勇, 等. 基于相对形状上下文和谱匹配方法的点模式匹配算法 [J]. 电子与信息学报,2010,32(10):2287-2293.

    ZHAO Jian, SUN Jixiang, LI Zhiyong, et al. Point pattern matching algorithm based on relative shape context and spectral matching method [J]. Journal of Electronics & Information Technology,2010,32(10):2287-2293.
    [41] WEI E B, LIU S B, WANG Z Z, et al. Emissivity measurements of foam-covered water surface at l-band for low water temperatures [J]. Remote Sensing,2014,6(11):10913-10930. doi: 10.3390/rs61110913
    [42] SCHEELER R, POPOVIC Z. A 1.4 GHz MMIC active cold noise source: 2013 IEEE Compound Semiconductor Integrated Circuit Symposium [C]. Monterey: IEEE, 2013: 13-16.
    [43] TOMBARI F, SALTI S, DI S L. Unique shape context for 3D data description: The ACM workshop on 3D object retrieval [C]. Firenze: ACM, 2010: 57-62.
    [44] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration: 2009 IEEE International Conference on Robotics and Automation [C]. Kobe: IEEE, 2009: 3212-3217.
    [45] 朱琛琛. 基于ICP算法的点云配准研究 [D]. 郑州: 郑州大学, 2019.

    ZHU Chenchen. Point cloud registration based on ICP algorithm research [D]. Zhengzhou: Zhengzhou University, 2019.
    [46] 陆军, 彭仲涛. 基于快速点特征直方图的特征点云迭代插值配准算法 [J]. 国防科技大学学报,2014,36(6):12-17.

    LU Jun, PENG Zhongtao. Iterative interpolation point cloud registration algorithm based on fast point feature histograms [J]. Journal of National University of Defense Technology,2014,36(6):12-17.
    [47] WU L, WANG G, HU Y. Iterave closest point registration for fast point feature histogram features of a volume density optimization algorithm [J]. Measurement and Control,2020,53(1/2):29-39. doi: 10.1177/0020294019878869
    [48] 吴飞, 赵新灿, 展鹏磊, 等. 自适应邻域选择的FPFH特征提取算法 [J]. 计算机科学,2019,46(2):266-270. doi: 10.11896/j.issn.1002-137X.2019.02.041

    WU Fei, ZHAO Xincan, ZHAN Penglei, et al. FPFH feature extraction algorithm based on adaptive neighborhood selection [J]. Computer Science,2019,46(2):266-270. doi: 10.11896/j.issn.1002-137X.2019.02.041
    [49] 赵明富, 曹利波, 宋涛, 等. 三维点云配准中FPFH邻域半径自主选取算法 [J]. 激光与光电子学进展,2021,58(6):123-131.

    ZHAO Mingfu, CAO Libo, SONG Tao, et al. Independent method for selecting radius of FPFH neighborhood in 3d point cloud registration [J]. Laser & Optoelectronics Progress,2021,58(6):123-131.
    [50] LIU Y, KONG D, ZHAO D, et al. A point cloud registration algorithm based on feature extraction and matching [J]. Mathematical Problems in Engineering, 2018, 2018: 1-9.
    [51] 刘剑, 白迪. 基于特征匹配的三维点云配准算法 [J]. 光学学报,2018,38(12):240-247.

    LIU Jian, BAI Di. 3D point cloud registration algorithm based on feature matching [J]. Acta Optica Sinica,2018,38(12):240-247.
    [52] 庄祉昀, 张军, 孙广富. 用于三维点云表示的扩展点特征直方图算法 [J]. 国防科技大学学报,2016,38(6):124-129. doi: 10.11887/j.cn.201606020

    ZHUANG Zhiyun, ZHANG Jun, SUN Guangfu. Extended point feature histograms for 3D point cloud representation [J]. Journal of National University of Defense Technology,2016,38(6):124-129. doi: 10.11887/j.cn.201606020
    [53] BIBER P, STRASSER W. The normal distributions transform: A new approach to laser scan matching: 2003 IEEE/RSJ international conference on intelligent robots and systems [C]. Las Vegas: IEEE, 2003: 2743-2748.
    [54] MAGNUSSON M, LILIENTHAL A, DUCKETT T. Scan registration for autonomous mining vehicles using 3D-NDT [J]. Journal of Field Robotics,2007,24(10):803-827. doi: 10.1002/rob.20204
    [55] 赵凯, 朱愿, 王任栋. 基于改进NDT算法的城市场景三维点云配准 [J]. 军事交通学院学报,2019,21(3):80-84.

    ZHAO Kai, ZHU Yuan, WANG Rendong. Urban scene 3D point cloud registration based on improved NDT algorithm [J]. Journal of Academy of Military Transportation,2019,21(3):80-84.
    [56] DAS A, WASLANDER S L. Scan registration with multi-scale k-means normal distributions transform: 2012 IEEE/RSJ international conference on intelligent robots and systems [C]. Vilamoura-Algarve: IEEE, 2012.
    [57] DAS A, WASLANDER S L. Scan registration using segmented region growing NDT [J]. The International Journal of Robotics Research,2014,33(13):1645-1663. doi: 10.1177/0278364914539404
    [58] MYRONENKO A, SONG X. Point set registration: Coherent point drift [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(12):2262-2275. doi: 10.1109/TPAMI.2010.46
    [59] YANG X S, DEB S. Cuckoo search via levy flights: 2009 world congress on nature & biologically inspired computing [C]. Coimbatore: IEEE, 2009: 210-214.
    [60] ZHANG Y, WANG L, WU Q. Modified adaptive cuckoo search (MACS) algorithm and formal description for global optimisation [J]. International Journal of Computer Application in Technology,2012,44(2):73-79. doi: 10.1504/IJCAT.2012.048675
    [61] 张永韡, 汪镭, 吴启迪. 动态适应布谷鸟搜索算法 [J]. 控制与决策,2014,29(4):617-622.

    ZHANG Yongwei, WANG Lei, WU Qidi. Dynamic adaptation cuckoo search algorithm [J]. Control and Decision,2014,29(4):617-622.
    [62] 王李进, 尹义龙, 钟一文. 逐维改进的布谷鸟搜索算法 [J]. 软件学报,2013,24(11):2687-2698.

    WANG Lijin, YIN Yilong, ZHONG Yiwen. Cuckoo search algorithm with dimension by dimension improvement [J]. Journal of Software,2013,24(11):2687-2698.
    [63] 林要华, 王维. 基于逐维策略的布谷鸟搜索增强算法 [J]. 计算机工程与科学,2017,39(1):165-172. doi: 10.3969/j.issn.1007-130X.2017.01.023

    LIN Yaohua, WANG Wei. An enhanced cuckoo search algorithm based on dimension by dimension strategy [J]. Computer Engineering & Science,2017,39(1):165-172. doi: 10.3969/j.issn.1007-130X.2017.01.023
    [64] GHODRATI A, LOTFI S. A hybrid CS/PSO algorithm for global optimization [J]. Lecture Notes in Computer Science, 2012,7198(1):89-98.
    [65] WANG F, LUO L, HE X, et al. Hybrid optimization algorithm of PSO and cuckoo search: 2011 2nd international conference on artificial intelligence, management science and electronic commerce(AIMSEC) [C]. Dengleng: IEEE, 2011: 1172-1175.
    [66] VALIAN E, MOHANNA S, TAVAKOLI S. Improved cuckoo search algorithm for global optimization [J]. International Journal of Communications and Information Technology,2011,1(1):31-44.
    [67] WALTON S, HASSAN O, MORGAN K, et al. Modified cuckoo search: A new gradient free optimisation algorithm [J]. Chaos, Solitons & Fractals,2011,44(9):710-718.
    [68] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm [J]. Journal of Global Optimization,2007,39(3):459-471. doi: 10.1007/s10898-007-9149-x
    [69] ZHU G, KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization [J]. Applied Mathematics and Computation,2010,217(7):3166-3173. doi: 10.1016/j.amc.2010.08.049
    [70] BANHARNSAKUN A, ACHALAKUL T, SIRINAOVAKUL B. The best-so-far selection in artificial bee colony algorithm [J]. Applied Soft Computing,2011,11(2):2888-2901. doi: 10.1016/j.asoc.2010.11.025
    [71] AKAY B, KARABOGA D. A modified artificial bee colony algorithm for real-parameter optimization [J]. Information Sciences,2012,192:120-142. doi: 10.1016/j.ins.2010.07.015
    [72] BANSAL J C, SHARMA H, ARYA K V, et al. Self-adaptive artificial bee colony [J]. Optimization,2014,63(10):1513-1532. doi: 10.1080/02331934.2014.917302
    [73] GAO W, LIU S. A modified artificial bee colony algorithm [J]. Computers & Operations Research,2012,39(3):687-697.
    [74] GAO W, LIU S. Improved artificial bee colony algorithm for global optimization [J]. Information Processing Letters,2011,111(17):871-882. doi: 10.1016/j.ipl.2011.06.002
    [75] LI G, NIU P, XIAO X. Development and investigation of efficient artificial bee colony algorithm for numerical function optimization [J]. Applied Soft Computing,2012,12(1):320-332. doi: 10.1016/j.asoc.2011.08.040
    [76] XIANG W, MA S, AN M. Habcde: A hybrid evolutionary algorithm based on artificial bee colony algorithm and differential evolution [J]. Applied Mathematics and Computation,2014,238:370-386. doi: 10.1016/j.amc.2014.03.055
    [77] KANG F, LI J, MA Z. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions [J]. Information Sciences,2011,181(16):3508-3531. doi: 10.1016/j.ins.2011.04.024
    [78] WU B, QIAN C, NI W, et al. Hybrid harmony search and artificial bee colony algorithm for global optimization problems [J]. Computers & Mathematics with Applications,2012,64(8):2621-2634.
    [79] QI C R, SU H, MO K, et al. PointNet: Deep learning on point sets for 3D classification and segmentation: 30th IEEE conference on computer vision and pattern recognition [C]. Honolulu: IEEE, 2017: 77-85.
    [80] 李建微, 占家旺. 三维点云配准方法研究进展 [J]. 中国图象图形学报,2022,27(2):349-367.

    LI Jianwei, ZHAN Jiawang. Review on 3D point cloud registration method [J]. Journal of Image and Graphics,2022,27(2):349-367.
    [81] QI C R, YI L, SU H, et al. PointNet + + : Deep hierarchical feature learning on point sets in a metric space [J]. Computer Science, 2017: ArXiv 1706.02413.
    [82] LU W, WAN G, ZHOU Y, et al. DeepVCP: An end-to-end deep neural network for point cloud registration: IEEE/CVF international conference on computer vision [C]. Seoul: IEEE, 2019: 12-21.
    [83] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition [J]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 945-953.
    [84] 舒程珣, 何云涛, 孙庆科. 基于卷积神经网络的点云配准方法 [J]. 激光与光电子学进展,2017,54(3):129-137.

    SHU Chengxun, HE Yuntao, SUN Qingke. Point cloud registration based on convolutional neural network [J]. Laser & Optoelectronics Progress,2017,54(3):129-137.
    [85] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds [J]. Acm Transactions on Graphics,2019,38(5):1-12.
    [86] THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: Flexible and deformable convolution for point clouds: IEEE/CVF international conference on computer vision [C]. Seoul: IEEE, 2019: 6411-6420.
    [87] XU M, DING R, ZHAO H, et al. PAConv: Position adaptive convolution with dynamic kernel assembling on point clouds: IEEE/CVF conference on computer vision and pattern recognition [C]. Nashville: IEEE, 2021: 3173-3182.
    [88] CHOY C, PARK J, KOLTUN V. Fully convolutional geometric features: IEEE/CVF international conference on computer vision [C]. Seoul: IEEE, 2019: 8958-8966.
    [89] WANG Y, SOLOMON J M. Deep closest point: Learning representations for point cloud registration [J]. Proceedings of the IEEE International Conference on Computer Vision, 2019, 2019: 3523-3532.
    [90] AOKI Y, GOFORTH H, SRIVATSAN R A, et al. PointNetLK: Robust & efficient point cloud registration using pointNet: IEEE/CVF conference on computer vision and pattern recognition [C]. Long Beach: IEEE, 2019: 7163-7172.
    [91] SARODE V, LI X, GOFORTH H, et al. PcrNet: Point cloud registration network using pointNet encoding [J]. Computer Science, 2019: ArXiv 1908.07906.
    [92] 易倩, 钟浩宇, 刘龙, 等. 基于ROI-RSICP算法的车轮廓形动态检测 [J]. 中国激光,2020,47(11):154-165.

    YI Qian, ZHONG Haoyu, LIU Long, et al. Dynamic inspection of profile based on ROI-RSICP algorithm [J]. Chinese Journal of Lasers,2020,47(11):154-165.
    [93] ZAGANIDIS A, SUN L, DUCKETT T, et al. Integrating deep semantic segmentation into 3-D point cloud registration [J]. IEEE Robotics and Automation Letters,2018,3(4):2942-2949. doi: 10.1109/LRA.2018.2848308
    [94] 陈强, 岳东杰, 陈健. 基于特征空间匹配的激光雷达点云配准算法 [J]. 大地测量与地球动力学,2020,40(12):1303-1307.

    CHEN Qiang, YUE Dongjie, CHEN Jian. Laser lidar point registration algorithm based on feature space matching [J]. Journal of Geodesy and Geodynamics,2020,40(12):1303-1307.
    [95] 李昌华, 史浩, 李智杰. 基于卷积神经网络结合改进Harris-SIFT的点云配准方法 [J]. 激光与光电子学进展,2020,57(20):238-247.

    LI Changhua, SHI Hao, LI Zhijie. Point cloud registration method based on combination of convolutional neural network and improved Harris-SIFT [J]. Laser & Optoelectronics Progress,2020,57(20):238-247.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  665
  • HTML全文浏览量:  879
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2023-01-17
  • 录用日期:  2023-01-17
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回