CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超纳米金刚石薄膜的快速生长及结构分析

位少博 王兵 熊鹰

位少博, 王兵, 熊鹰. 超纳米金刚石薄膜的快速生长及结构分析[J]. 金刚石与磨料磨具工程, 2023, 43(2): 176-181. doi: 10.13394/j.cnki.jgszz.2022.0122
引用本文: 位少博, 王兵, 熊鹰. 超纳米金刚石薄膜的快速生长及结构分析[J]. 金刚石与磨料磨具工程, 2023, 43(2): 176-181. doi: 10.13394/j.cnki.jgszz.2022.0122
WEI Shaobo, WANG Bing, XIONG Ying. Research on the rapid growth and structure of ultra-nanocrystalline diamond thin films[J]. Diamond & Abrasives Engineering, 2023, 43(2): 176-181. doi: 10.13394/j.cnki.jgszz.2022.0122
Citation: WEI Shaobo, WANG Bing, XIONG Ying. Research on the rapid growth and structure of ultra-nanocrystalline diamond thin films[J]. Diamond & Abrasives Engineering, 2023, 43(2): 176-181. doi: 10.13394/j.cnki.jgszz.2022.0122

超纳米金刚石薄膜的快速生长及结构分析

doi: 10.13394/j.cnki.jgszz.2022.0122
基金项目: 四川省省院省校合作项目(2021YFSY0029)
详细信息
    作者简介:

    位少博,男,1996年生,硕士。主要研究方向:超纳米金刚石薄膜。E-mail:529273244@qq.com

    通讯作者:

    王兵,男,1967生,博士、教授。主要研究方向:薄膜材料/功能材料。E-mail:wangbing67@163.com

  • 中图分类号: TB74;TB144;TQ164

Research on the rapid growth and structure of ultra-nanocrystalline diamond thin films

  • 摘要: 采用微波等离子体化学气相沉积(microwave plasma chemical vapor deposition,MPCVD)技术,通过调节微波功率制备不同温度条件下的超纳米金刚石(ultrananocrystalline diamond,UNCD)薄膜。比较分析反应源激活功率及基体温度对UNCD膜生长和组成结构的影响,以期获得高质量UNCD膜材的快速生长工艺技术。采用SEM、XRD、Raman等方法分析表征UNCD薄膜的形貌结构、物相组成和生长速率,同时通过OES光谱监测UNCD薄膜沉积过程中的生长基团状态。结果表明:UNCD薄膜沉积的基体温度范围在450~650 ℃,且随着功率和基体温度增加,OES光谱中CN、C2基团峰值强度增强,生长速率从0.82 μm/h上升到6.62 μm/h;膜材中晶粒尺寸稍有增加,但平均晶粒尺寸均小于10.00 nm,且表面更加平整光滑,形成更有利于力学性能的表面形貌。因此,采用二异丙胺液态小分子为反应源,同时施加更高的微波功率,在更高的基体温度下沉积是快速生长高质量UNCD膜的有效工艺途径。

     

  • 图  1  MPCVD设备

    Figure  1.  MPCVD equipment

    图  2  不同微波功率及温度下生长的UNCD薄膜的SEM图

    Figure  2.  SEM images of UNCD films grown at different different microwave power and temperatures

    图  3  不同功率及温度下所得薄膜的XRD图

    Figure  3.  XRD patterns of the obtained films under different power and temperature

    图  4  不同功率及温度下UNCD薄膜的Raman光谱

    Figure  4.  Raman spectra of UNCD films under different power and temperature

    图  5  不同功率及温度下UNCD薄膜的ID/IG

    Figure  5.  ID/IG values of UNCD films at different power and temperature

    图  6  不同功率及温度下UNCD薄膜的ICP-OES光谱图

    Figure  6.  ICP-OES spectra of UNCD films under different power and temperature

    表  1  UNCD薄膜制备工艺参数

    Table  1.   Preparation process parameters of UNCD films

    参数名称数值
    功率 P / kW3.03.54.04.55.0
    温度 θ / ℃450500550600650
    压力 p / kPa11.311.311.311.311.3
    C6H15N流量 Q1 / (mL·min−1)88888
    H2流量 Q2 / (mL·min−1)160160160160160
    下载: 导出CSV

    表  2  不同微波功率及温度下沉积薄膜的厚度及生长速度

    Table  2.   Thickness and growth rate of deposited films under different microwave power and temperature

    参数名称数值
    功率 P / kW3.03.54.04.55.0
    温度 θ / ℃450500550600650
    3 h沉积厚度 h / μm2.4177.34913.31014.46019.870
    生长速率 v / (μm·h−10.812.454.444.826.62
    下载: 导出CSV

    表  3  不同温度下UNCD薄膜的晶粒尺寸

    Table  3.   Grain size of UNCD films at different temperatures

    功率
    p/kW
    温度
    θ / ℃
    衍射峰位
    2θ / (°)
    半峰宽
    B / (cm−1)
    由不同衍射峰
    所得晶粒尺寸
    d / nm
    平均晶粒尺寸
    d1 / nm
    3.045044.052.154.148.83
    75.980.8212.75
    92.021.249.59
    3.550043.861.207.428.73
    75.421.099.56
    91.491.299.20
    4.055043.921.058.469.20
    75.431.059.98
    91.581.299.17
    4.560043.880.959.329.34
    75.381.109.45
    91.521.289.24
    5.065044.381.018.868.98
    76.021.129.35
    92.191.378.72
    下载: 导出CSV
  • [1] AUCIELLO O, SUMANT A V. Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices [J]. Diamond and Related Materials,2010,19(7/8/9):699-718.
    [2] AUCIELLO O. Science and technology of multifunctional ultrananocrystalline diamond (UNCDTM) coatings and applications to a new generation of implantable medical devices [J]. Journal of Biotechnology & Biomaterials,2017,7(2):6-7.
    [3] ZHOU A F, WANG X, PACHECO E, et al. Ultrananocrystalline diamond nanowires: Fabrication, characterization, and sensor applications [J]. Materials (Basel),2021,14(3):661. doi: 10.3390/ma14030661
    [4] AUCIELLO O, ASLAM D M. Review on advances in microcrystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies [J]. Journal of Materials Science,2021,56(12):1-60.
    [5] SANKARAN K J, KURIAN J, CHEN H C, et al. Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma [J]. Journal of Physics D: Applied Physics, 2012, 45(36): 365303.
    [6] 谈耀麟. 论UNCD的应用与研发方向(工业金刚石战略发展思考之三) [J]. 超硬材料工程,2011,23(1):36-41. doi: 10.3969/j.issn.1673-1433.2011.01.009

    TAN Yaolin. On the application and R&D direction of UNCD (third thought on the strategic development of industrial diamond) [J]. Superabrasives Engineering,2011,23(1):36-41. doi: 10.3969/j.issn.1673-1433.2011.01.009
    [7] SARAVANAN A, HUANG B R, SANKARAN K J, et al. Fast growth of ultrananocrystalline diamond films by bias-enhanced nucleation and growth process in CH4/Ar plasma [J]. Applied Physics Letters,2014,104(18):1603-1605.
    [8] TANG C J, NEVES A J, PEREIRA S, et al. Effect of nitrogen and oxygen addition on morphology and texture of diamond films (from polycrystalline to nanocrystalline) [J]. Diamond and Related Materials,2008,17(1):72-78. doi: 10.1016/j.diamond.2007.10.022
    [9] LIN Q, CHEN S, JI Z, et al. A novel growth model for depositing ultrananocrystalline diamond films in CH4/H2 chemistry [J]. Surface and Coatings Technology,2021,419(12):72-80.
    [10] SANKARAN K J, HUANG B-R, SARAVANAN A, et al. Nitrogen incorporated ultrananocrystalline diamond microstructures from bias-enhanced microwave N2/CH4-plasma chemical vapor deposition [J]. Plasma Processes and Polymers,2016,13(4):419-428. doi: 10.1002/ppap.201500079
    [11] ARENAL R, BRUNO P, MILLER D J, et al. Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films [J]. Physical Review B,2007,75(19):434-436.
    [12] BHATTACHARYYA S, AUCIELLO O, BIRRELL J, et al. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films [J]. Applied Physics Letters,2001,79(10):1441-1443. doi: 10.1063/1.1400761
    [13] 马志斌, 吴建鹏, 陶利平, 等. MPCVD等离子体的发射光谱研究 [J]. 光谱学与光谱分析,2013,33(9):2562-2565. doi: 10.3964/j.issn.1000-0593(2013)09-2562-04

    MA Zhibin, WU Jianpeng, TAO Liping, et al. Emission spectroscopic study of MPCVD plasma [J]. Spectroscopy and Spectral Analysis,2013,33(9):2562-2565. doi: 10.3964/j.issn.1000-0593(2013)09-2562-04
    [14] 陶利平. MPCVD沉积金刚石薄膜光谱分析 [D]. 武汉: 武汉工程大学, 2013.

    TAO Liping. Spectral analysis of MPCVD deposited diamond film [D]. Wuhan: Wuhan Institute of Technology, 2013.
    [15] 叶嗣林, 王天乐, 黄国波, 等. MPCVD法制备的不同温度的金刚石涂层的微结构及力学性能研究 [J]. 广州化工,2021,49(23):31-34. doi: 10.3969/j.issn.1001-9677.2021.23.010

    YE Silin, WANG Tianle, HUANG Guobo, et al. Study on microstructure and mechanical properties of diamond coatings prepared by MPCVD method at different temperatures [J]. Guangzhou Chemical Industry,2021,49(23):31-34. doi: 10.3969/j.issn.1001-9677.2021.23.010
    [16] 江彩义, 髙冀芸, 郭胜惠, 等. 氧气流量对MPCVD法制备超纳米金刚石膜的影响 [J]. 材料导报,2017,31(S1):66-69.

    JIANG Caiyi, GAO Jiyun, GUO Shenghui, et al. Effect of oxygen flow rate on the preparation of ultra-nanodiamond films by MPCVD [J]. Materials Direct,2017,31(S1):66-69.
    [17] PANDA K, KUMAR N, PANIGRAHI B K, et al. Tribological properties of N+ ion implanted ultrananocrystalline diamond films [J]. Tribology International,2013,57:124-136. doi: 10.1016/j.triboint.2012.07.016
    [18] SANKARAN K J, KUMAR N, KURIAN J, et al. Improvement in tribological properties by modification of grain boundary and microstructure of ultrananocrystalline diamond films [J]. Acs Appl Mater Interfaces,2013,5(9):3614-3624. doi: 10.1021/am303144m
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  237
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-09-24
  • 录用日期:  2022-09-29
  • 刊出日期:  2023-04-20

目录

    /

    返回文章
    返回