CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石砂轮轴向进给磨削硬质合金时的磨削力实验研究

任小柯 黄辉 苏珍发

任小柯, 黄辉, 苏珍发. 金刚石砂轮轴向进给磨削硬质合金时的磨削力实验研究[J]. 金刚石与磨料磨具工程, 2022, 42(5): 567-577. doi: 10.13394/j.cnki.jgszz.2022.0040
引用本文: 任小柯, 黄辉, 苏珍发. 金刚石砂轮轴向进给磨削硬质合金时的磨削力实验研究[J]. 金刚石与磨料磨具工程, 2022, 42(5): 567-577. doi: 10.13394/j.cnki.jgszz.2022.0040
REN Xiaoke, HUANG Hui, SU Zhenfa. Experimental study on grinding force in axial feed grinding of cemented carbide with diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(5): 567-577. doi: 10.13394/j.cnki.jgszz.2022.0040
Citation: REN Xiaoke, HUANG Hui, SU Zhenfa. Experimental study on grinding force in axial feed grinding of cemented carbide with diamond grinding wheel[J]. Diamond & Abrasives Engineering, 2022, 42(5): 567-577. doi: 10.13394/j.cnki.jgszz.2022.0040

金刚石砂轮轴向进给磨削硬质合金时的磨削力实验研究

doi: 10.13394/j.cnki.jgszz.2022.0040
详细信息
    作者简介:

    任小柯,男,1992年,硕士研究生,研究方向:智能制造与精密加工。E-mail:634409780@qq.com

    通讯作者:

    黄辉,男,1974年,博士,教授,博士生导师,研究领域:脆性材料高效、精密、智能加工,超硬材料工具制备与应用,E-mail:huangh@hqu.edu.cn

  • 中图分类号: TG58;TG74;TH142;TQ164

Experimental study on grinding force in axial feed grinding of cemented carbide with diamond grinding wheel

  • 摘要: 为研究金刚石砂轮轴向进给磨削硬质合金时的磨削力,建立轴向力与法向力、切向力的转化模型;测量不同工艺参数下的磨削力变化;分析工艺参数对法向力、切向力、轴向力的影响规律并建立磨削力的经验公式。结果表明:在轴向进给磨削过程中,最大的磨削力是法向力,而轴向力略小于切向力。砂轮线速度对3个方向的磨削力的影响大致相同。磨削深度对法向、切向及轴向3个方向的磨削力的影响明显不同。进给速度对3个方向磨削力的影响不显著。

     

  • 图  1  外圆纵向磨削示意图

    Figure  1.  Cylindrical traverse grinding

    图  2  磨削实验系统示意图

    Figure  2.  Schematic diagram of grinding experimental system

    图  3  硬质合金试件

    Figure  3.  Cemented carbide specimen

    图  4  磨削力测量采集系统实物图

    Figure  4.  Grinding force measurement system

    图  5  磨削弧区受力分析

    Figure  5.  Stress analysis of grinding arc area

    图  6  磨削力原始信号

    Figure  6.  Original signal of grinding force

    ($ {v}_{\mathrm{s}} $=25.13 m/s,$ {v}_{\mathrm{f}} $=55 mm/min,$ {a}_{\mathrm{p}} $=0.30 mm)

    图  7  磨削力滤波信号

    Figure  7.  Filtered signal of grinding force

    ($ {v}_{\mathrm{s}} $=25.13 m/s,$ {v}_{\mathrm{f}} $=55 mm/min,$ {a}_{\mathrm{p}} $=0.3 mm)

    图  8  砂轮线速度对法向力的影响

    Figure  8.  Effect of grinding wheel linear speed on normal force

    图  9  砂轮线速度对切向力的影响

    Figure  9.  Effect of grinding wheel linear speed on tangential force

    图  10  砂轮线速度对轴向力的影响

    Figure  10.  Effect of grinding wheel linear speed on axial force

    图  11  磨削深度对法向力的影响

    Figure  11.  Effect of grinding depth on normal force

    图  12  磨削深度对切向力的影响

    Figure  12.  Effect of grinding depth on tangential force

    图  13  磨削深度对轴向力的影响

    Figure  13.  Effect of grinding depth on axial force

    图  14  进给速度对法向力的影响

    Figure  14.  Effect of feed speed on normal force

    图  15  进给速度对切向力的影响

    Figure  15.  Effect of feed speed on tangential force

    图  16  进给速度对轴向力的影响

    Figure  16.  Effect of feed speed on axial force

    表  1  GU20机械物理性能

    Table  1.   Mechanical and physical properties of GU20

    主要参数取值
    WC晶粒度 d50 / μm0.7
    密度 ρ / (g·mm−3)14.5
    弹性模量 E / GPa525
    硬度 91.9 HRA
    抗弯强度 σ / MPa3800
    比热 c / (J·kg−1·K−1)950
    导热率 K / (W·m−1·K−1)110
    热膨胀系数 λ / (K−1)5×10−6
    下载: 导出CSV

    表  2  硬质合金磨削工艺参数表

    Table  2.   Cemented carbide grinding process parameters

    工艺参数取值
    砂轮线速度 $ {v}_{{\rm{s}}} $ / (m·s−1)25.13,35.60,46.08,56.55
    磨削深度 $ {a}_{{\rm{p}}} $ / mm0.15,0.20,0.25,0.30
    轴向进给速度 $ {v}_{{\rm{f}}} $ / (mm·min−1)40,45,50,55
    下载: 导出CSV

    表  3  磨削深度对磨削力变化幅度的影响

    Table  3.   Effect of grinding depth on variation of grinding forces

    磨削深度
    $ {a}_{\mathrm{p}} $ / mm
    法向力降幅
    ΔFn / N
    切向力降幅
    ΔFt / N
    轴向力降幅
    ΔFa / N
    0.15106.3054.324.89
    0.20143.6767.6111.11
    0.25143.6768.4313.84
    0.30147.7668.6620.09
    下载: 导出CSV
  • [1] WANG Kaifei, ZHANG Guohua. Synthesis of high-purity ultrafine tungsten and tungsten carbide powders [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6): 1697-1706.
    [2] 王倩玉, 秦明礼, 吴昊阳, 等. 新型纳米晶硬质合金的研究现状及发展趋势 [J]. 粉末冶金技术,2022,40(4):1-17. doi: 10.19591/j.cnki.cn11-1974/tf.2021040010

    WANG Qianyu, QIN Mingli, WU Haoyang, et al. Research status and development trend of new nanocrystalline cemented carbide [J]. Powder Metallurgy Technology,2022,40(4):1-17. doi: 10.19591/j.cnki.cn11-1974/tf.2021040010
    [3] 柯明峰, 吕冰海, 邵蓝樱, 等. 硬质合金刀片前刀面的剪切增稠抛光实验研究 [J]. 表面技术,2022,51(1):220-228.

    KE Mingfeng, LYU Binghai, SHAO Lanying, et al. Experimental study on shearing thickening polishing of rake surface of cemented carbide inserts [J]. Surface Technology,2022,51(1):220-228.
    [4] FANG S. Wear assessment of cemented carbide tools (WC-Co) with defined cutting edges under grinding-like service conditions [J]. Wear,2021,476:203744. doi: 10.1016/j.wear.2021.203744
    [5] VENTURA C, CRUZ D C, SORDI V L, et al. Effect of the grinding process on the wear of a cemented tungsten carbide cutting insert during turning [J]. Procedia CIRP,2021,101:174-177. doi: 10.1016/j.procir.2021.02.020
    [6] YANG J, ODEN M, JOHANSSON-JOESAAR M P, et al. Grinding effects on surface integrity and mechanical strength of WC-Co cemented carbides [J]. Procedia CIRP,2014,13(1):257-263.
    [7] LIU X, WANG H, FENG H, et al. On the enhanced wear resistance of ultra-coarse WC-Co cemented carbides by WCoB addition [J]. Journal of Alloys and Compounds,2022,894:162449. doi: 10.1016/j.jallcom.2021.162449
    [8] 刘鹏程, 谢鹏, 李想, 等. 整体硬质合金刀具磨削工艺实验分析 [J]. 工具技术,2021,55(10):41-44. doi: 10.3969/j.issn.1000-7008.2021.10.008

    LIU Pengcheng, XIE Peng, LI Xiang, et al. Experimental analysis on grinding technology of solid carbide tools [J]. Tool Engineering,2021,55(10):41-44. doi: 10.3969/j.issn.1000-7008.2021.10.008
    [9] 许鹏飞, 刘志林, 易为, 等. 磨削工艺对硬质合金切槽刀片刃口质量的影响 [J]. 硬质合金,2018,35(1):50-56.

    XU Pengfei, LIU Zhilin, YI Wei, et al. The effect of grinding process on cutting edge quality of carbide groove inserts [J]. Cemented Carbides,2018,35(1):50-56.
    [10] 郑清, 姚斌, 蔡思捷, 等. 硬质合金可转位刀片周边刃磨磨削力模型研究 [J]. 组合机床与自动化加工技术,2020(8):16-20.

    ZHENG Qing, YAO Bin, CAI Sijie, et al. Research on grinding force model for peripheral grinding of cemented carbide indexable inserts [J]. Modular Machine Tool & Automatic Manufacturing Technique,2020(8):16-20.
    [11] 宋铁军, 周志雄, 李伟, 等. 硬质合金立铣刀螺旋槽磨削表面粗糙度模型研究 [J]. 机械工程学报,2017,53(17):185-192. doi: 10.3901/JME.2017.17.185

    SONG Tiejun, ZHOU Zhixiong, LI Wei, et al. Roughness model for helical flute of cemented carbide end mill under grinding [J]. Journal of Mechanical Engineering,2017,53(17):185-192. doi: 10.3901/JME.2017.17.185
    [12] WIRTZ C, DEHMER A, TRAUTH D, et al. Analysis of the grinding wheel wear in dependency of the cemented carbide specification [J]. International Journal of Advanced Manufacturing Technology,2018,1-4(99):747-754.
    [13] KLOCKE F, WIRTZ C, MUELLER S, et al. Analysis of the material behavior of cemented carbides (WC-Co) in grinding by single grain cutting tests [J]. Procedia CIRP,2016,46:209-213. doi: 10.1016/j.procir.2016.03.209
    [14] 熊建超, 邹芹, 李艳国, 等. WC 基硬质合金刀具材料研究进展 [J]. 金刚石与磨料磨具工程, 2019, 39(02): 95-102

    Xiong J C, Zhou Q, Li Y G, et al. Research progress of WC-based cemented carbide tool materials [J]. Diamond & Abrasives Engineering, 2019, 39(02): 95-102
    [15] 杨军, 黄向明, 蒋福星, 等. 纳米硬质合金高速深磨工艺试验研究 [J]. 现代制造工程,2015(10):12-17,21. doi: 10.3969/j.issn.1671-3133.2015.10.004

    YANG Jun, HUANG Xiangming, JIANG Fuxing, et al. Experimental investigation on high speed grinding characteristics of the nano-cemented carbides [J]. Modern Manufacturing Engineering,2015(10):12-17,21. doi: 10.3969/j.issn.1671-3133.2015.10.004
    [16] 陈哲, 陈春晖, 刘一波, 等. 树脂结合剂金刚石堆积磨料砂轮磨削YG8硬质合金 [J]. 金刚石与磨料磨具工程,2020,40(6):25-30.

    CHEN Zhe, CHEN Chunhui, LIU Yibo, et al. Grinding YG8 cemented carbide with resin bond grinding wheels made of diamond agglomerate abrasive [J]. Diamond & Abrasives Engineering,2020,40(6):25-30.
    [17] 张大将, 王颖达, 陈世隐, 等. 钎焊金刚石砂轮磨削YG8硬质合金的试验研究 [J]. 超硬材料工程,2017,29(3):19-23. doi: 10.3969/j.issn.1673-1433.2017.03.003

    ZHANG Dajiang, WANG Yingda, CHEN Shiyin, et al. Experimental study of the grinding of YG8 cemented carbide by brazed diamond wheel [J]. Superhard Material Engineering,2017,29(3):19-23. doi: 10.3969/j.issn.1673-1433.2017.03.003
    [18] 刘伟, 刘一波, 黄霞, 等. 陶瓷金刚石砂轮在YG10X顶锤磨削加工中的应用 [J]. 金刚石与磨料磨具工程,2018,38(5):73-77.

    LIU Wei, LIU Yibo, HUANG Xia, et al. Application of vitrified bonded diamond wheel in YG10X cemented carbide anvil grinding [J]. Diamond & Abrasives Engineering,2018,38(5):73-77.
    [19] 陶洪亮, 宋鹏涛, 刘泓, 等. 陶瓷结合金刚石砂轮磨削硬质合金表面粗糙度的研究 [J]. 金刚石与磨料磨具工程,2011,31(3):54-56. doi: 10.3969/j.issn.1006-852X.2011.03.014

    TAO Hongliang, SONG Pengtao, LIU Hong, et al. Experimental research on surface roughness of cemented carbide ground with vitrified bond diamond wheel [J]. Diamond & Abrasives Engineering,2011,31(3):54-56. doi: 10.3969/j.issn.1006-852X.2011.03.014
    [20] ONISHI T, TAKASHIMA T, SAKAKURA M, et al. Improvement of the form accuracy of a slender workpiece in cylindrical traverse grinding [J]. International Journal of Automation Technology,2019,13(6):728-735. doi: 10.20965/ijat.2019.p0728
    [21] 高成. 基于硬脆材料端面轴向进给的磨削力建模与实验分析研究 [D]. 温州: 温州大学, 2020.

    GAO Cheng. Grinding force modeling and experimental analysis based on axial feed grinding of hard and brittle materials [D]. Wenzhou: Wenzhou University, 2020.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  881
  • HTML全文浏览量:  423
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-09
  • 修回日期:  2022-05-24
  • 录用日期:  2022-06-10
  • 网络出版日期:  2022-06-10
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回