CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢结硬质合金GT35切削去除机理研究

陈博川 邵梦博 高晓星 李麒麟 袁松梅

陈博川, 邵梦博, 高晓星, 李麒麟, 袁松梅. 钢结硬质合金GT35切削去除机理研究[J]. 金刚石与磨料磨具工程, 2022, 42(5): 626-636. doi: 10.13394/j.cnki.jgszz.2022.0038
引用本文: 陈博川, 邵梦博, 高晓星, 李麒麟, 袁松梅. 钢结硬质合金GT35切削去除机理研究[J]. 金刚石与磨料磨具工程, 2022, 42(5): 626-636. doi: 10.13394/j.cnki.jgszz.2022.0038
CHEN Bochuan, SHAO Mengbo, GAO Xiaoxing, LI Qilin, YUAN Songmei. Study on removal mechanism of steel bonded cemented carbide material GT35 in cutting process[J]. Diamond & Abrasives Engineering, 2022, 42(5): 626-636. doi: 10.13394/j.cnki.jgszz.2022.0038
Citation: CHEN Bochuan, SHAO Mengbo, GAO Xiaoxing, LI Qilin, YUAN Songmei. Study on removal mechanism of steel bonded cemented carbide material GT35 in cutting process[J]. Diamond & Abrasives Engineering, 2022, 42(5): 626-636. doi: 10.13394/j.cnki.jgszz.2022.0038

钢结硬质合金GT35切削去除机理研究

doi: 10.13394/j.cnki.jgszz.2022.0038
基金项目: 基础科研计划项目(JCKY2018601B201)。
详细信息
    作者简介:

    陈博川,男,1991年生,博士研究生。主要研究方向:复合材料加工、超声振动辅助加工。E-mail: chenbochuan11@qq.com

    通讯作者:

    袁松梅,女,1971年生,教授、博士生导师。主要研究方向:先进加工技术及装备、医工结合。E-mail:yuansm@buaa.edu.cn

  • 中图分类号: GT58;GT71;TQ164

Study on removal mechanism of steel bonded cemented carbide material GT35 in cutting process

  • 摘要: 为研究金刚石磨粒刀具切削钢结硬质合金GT35的微观刻划过程与材料去除机理,以单颗粒金刚石刻划实验为研究手段,分析其微观切削力的影响因素及材料的微观去除过程。通过单颗粒金刚石变切深实验发现,切削力与切痕截面积之间呈线性关系,获得的线性比例系数k的估计值可通过单颗粒金刚石等切深实验修正。随后,通过扫描电镜对GT35材料表面切痕形貌进行观测,并用激光共聚焦显微镜对其形貌进行三维建模,研究不同刻划深度下的材料去除模式。结果表明:修正后k(Fx)为0.026 29 N/μm2R1=0.990 46),k(Fz)为0.046 42 N/μm2R2=0.994 08); 调质GT35材料在多种切深下均以塑性去除为主,其中切痕底面呈现明显塑性剪切去除状态,切痕边缘位置呈现一定的脆性断裂状态。刀具在切削过程中会在刀尖处形成材料堆叠死区,引起刀具崩刃及磨损,且切痕表面形貌的形成与刀具磨损密切相关。

     

  • 图  1  GT35颗粒增强金属基复合材料微观组织

    Figure  1.  Microstructure of GT35 particle reinforced metal matrix composites

    图  2  调质GT35材料中TiC颗粒的微观结构(钢基体腐蚀处理)

    Figure  2.  Microstructure of TiC particles in quenched and tempered GT35 material (corrosion treatment of steel substrate)

    图  3  GT35磨抛后形貌

    Figure  3.  Morphology of polished GT35 sample

    图  4  单颗粒金刚石刻划GT35实验设置

    Figure  4.  Experimental setup of single particle diamond scratching test for GT35

    图  5  变切深刻划实验过程

    Figure  5.  Experimental process of variable depths scratching

    图  6  等切深刻划实验过程

    Figure  6.  Experimental process of stable depth scratching

    图  7  变切深切痕形貌图

    Figure  7.  Topography of variable cutting depth cutting

    图  8  切深及截面积随刻划长度变化示意图

    Figure  8.  Variation of cutting depth and groove cross-sectional area with scraching length

    图  9  变切深切痕截面积随时间变化

    Figure  9.  Variation of cross-sectional area of variable depth cutting

    图  10  变切深实验切削力随时间变化

    Figure  10.  Cutting force of variable depth cutting experiment changes with time

    图  11  切削力及比例系数k随时间变化图像

    Figure  11.  Variation trend of cutting force and proportional coefficient k with time

    图  12  等切深切痕形貌图

    Figure  12.  Appearance of equal cutting depth mark

    图  13  不同切深下的切痕截面积变化趋势及相对标准误差RSD

    Figure  13.  Variation trend and relative standard error (RSD) of cross-sectional area under different cutting depths in equal cutting depth experiment

    图  14  Fx2Fz2与切痕截面积S2的关系图

    Figure  14.  Relationship between Fx2/Fz2 and cross-sectional area S2

    图  15  等切深切痕形貌

    Figure  15.  Morphology of cutting area in equal cutting depth experiment

    图  16  金刚石刀具刻划调质GT35材料的缺陷产生过程

    Figure  16.  Material uplift and stacking process at the edge of the scratch

    图  17  切痕边缘材料隆起及堆叠过程

    Figure  17.  Generation process of material surface defects in diamond tool cutting

    图  18  圆锥体死区形成过程示意图

    Figure  18.  Generation process of cone dead zone

    图  19  单颗粒锥形金刚石磨粒刀具刻划实验前后形貌对比

    Figure  19.  Comparison of morphology of single particle conical diamond abrasive tool before and after scraching experiment

    表  1  GT35钢结硬质合金成分[22]

    Table  1.   Material composition of GT35[22]

    参数数值
    TiC 质量分数 ω1 / %35.0
    Cr 质量分数 ω2 / %2.0
    Mo 质量分数 ω3 / %2.0
    C 质量分数 ω4 / %0.5
    Fe 质量分数 ω5 / %余量
    下载: 导出CSV

    表  2  切削参数设置

    Table  2.   Cutting parameter setting

    参数数值
    切削速度 v / (mm·s−1)75
    等切深 ap1 / μm1.000,5.000,10.000,15.000,20.000
    变切深 ap2 / μm0~5.000
    下载: 导出CSV
  • [1] 瞿峻. Ti(C, N)基金属陶瓷增强技术及其组织和性能研究 [D]. 武汉: 华中科技大学, 2010.

    QU Jun. The research on the reinforcement technology and microstructure, mechanical properties of Ti(C, N)-based ceramics [D]. Wuhan: Huazhong University of Science & Technology, 2010.
    [2] 杨展. 钢结硬质合金胎体冲击回转钻进金刚石钻头研究 [D]. 北京: 中国地质大学, 2010.

    YANG Zhan. Study on diamond bit with steel bonded carbide type of matrix for percussive rotary drilling [D]. Beijing: China University of Geosciences, 2010.
    [3] 赵勋, 章伟, 李屏, 等. 钢结硬质合金抗振镗杆设计及应用研究 [J]. 硬质合金,2018,35(1):44-49.

    ZHAO Xun, ZHANG Wei, LI Ping, et al. Research on design and application of steel bonded cemented carbide vibration resistance boring bar [J]. Cemented Carbide,2018,35(1):44-49.
    [4] 张英, 贾玲玲. 钢结硬质合金材料实际应用的技术分析 [J]. 山东工程学院学报,2000(3):72-74.

    ZHANG Ying, JIA Lingling. Application of steel work kentanium to moudles of ceramic tiles [J]. Journal of Shandong Institute of Technology,2000(3):72-74.
    [5] 邓世谦. 钢结硬质合金GT35在内灯座拉伸模中的应用 [J]. 模具制造,2003(12):40-41. doi: 10.3969/j.issn.1671-3508.2003.12.015

    DENG Shiqian. Application of steel bonded cemented carbide GT35 in drawing die of inner lamp holder [J]. Die & Mould Manufacture,2003(12):40-41. doi: 10.3969/j.issn.1671-3508.2003.12.015
    [6] 张春河, 徐燕申, 林彬, 等. GT35钢结硬质合金材料镜面加工的试验研究 [J]. 天津大学学报,1999(2):89-92.

    ZHANG Chunhe, XU Yanshen, LIN Bin, et al. An experimental study of mirror machining techniques for GT35 steel based cemented carbide composites [J]. Journal of Tianjin University,1999(2):89-92.
    [7] 王荣滨. 钢结硬质合金模具冷热加工工艺研究 [J]. 有色金属加工,2009,38(3):15-17, 51. doi: 10.3969/j.issn.1671-6795.2009.03.006

    WANG Rongbin. The research for cold & heat processing of steel bond hard alloy mould [J]. Non Ferrous Metal Processing,2009,38(3):15-17, 51. doi: 10.3969/j.issn.1671-6795.2009.03.006
    [8] PARASHIVAMURTHY K I, KUMAR R K, SEETHARAMU S, et al. Review on TiC reinforced steel composites [J]. Journal of Materials Science,2001,36(18):4519-4530. doi: 10.1023/A:1017947206490
    [9] 熊拥军, 李溪滨, 赵福安. 钢结硬质合金材料的研究进展 [J]. 硬质合金,2005,22(2):121-124. doi: 10.3969/j.issn.1003-7292.2005.02.015

    XIONG Yongjun, LI Xibin, ZHAO Fu′an. Process in steel-bonded cemented carbide [J]. Cemented Carbide,2005,22(2):121-124. doi: 10.3969/j.issn.1003-7292.2005.02.015
    [10] 赵悦, 李素莲. 钢结硬质合金的加工性能 [J]. 机械工人: 冷加工,1988(8):34-35.

    ZHAO Yue, LI Sulian. Machinability of steel bonded cemented carbide [J]. Machinist: Cold-working,1988(8):34-35.
    [11] 范安平, 肖平安, 李晨坤, 等. TiC基钢结硬质合金的研究现状 [J]. 粉末冶金技术,2013,31(4):298-303. doi: 10.3969/j.issn.1001-3784.2013.04.011

    FAN Anping, XIAO Ping′an, LI Chenkun, et al. Research situation of TiC-based steel bonded carbide [J]. Powder Metallurgy Technology,2013,31(4):298-303. doi: 10.3969/j.issn.1001-3784.2013.04.011
    [12] 关佳亮, 仇忠臣, 赵增强, 等. 钢结硬质合金的ELID高效磨削实验研究 [J]. 机械设计与制造,2008(11):107-108. doi: 10.3969/j.issn.1001-3997.2008.11.042

    GUAN Jialiang, QIU Zhongchen, ZHAO Zengqiang, et al. Experimental study on high efficiency grinding of steel bonded cemented carbide by ELID [J]. Machinery Design & Manufacture,2008(11):107-108. doi: 10.3969/j.issn.1001-3997.2008.11.042
    [13] 杨雄, 冉小丰, 帅玉妹, 等. GT35钢结硬质合金电火花加工工艺试验 [J]. 硬质合金,2009,26(4):236-239. doi: 10.3969/j.issn.1003-7292.2009.04.008

    YANG Xiong, RAN Xiaofeng, SHUAI Yumei, et al. Electrical discharge machining (EDM) technological test of GT35 steel-bonded carbide [J]. Cemented Carbide,2009,26(4):236-239. doi: 10.3969/j.issn.1003-7292.2009.04.008
    [14] 郑涌. TiC增强Fe基复合材料的制备与性能研究 [D]. 北京: 北京交通大学, 2018.

    ZHENG Yong. Preparation and properties of TiC reinforced Fe matrix composites [D]. Beijing: Beijing Jiaotong University, 2018.
    [15] 张祥雷, 姚斌, 冯伟, 等. 基于多颗磨粒随机分布的虚拟砂轮建模及磨削力预测 [J]. 航空学报,2014,35(12):3489-3498. doi: 10.7527/S1000-6893.2014.0065

    ZHANG Xianglei, YAO Bin, FENG Wei, et al. Modeling of virtual grinding wheel based random distribution of multi abrasive grains and prediction of grinding force [J]. Acta Aeronautica et Astronautica Sinica,2014,35(12):3489-3498. doi: 10.7527/S1000-6893.2014.0065
    [16] ANDERSON D, WARKENTIN A, BAUER R. Experimental and numerical investigations of single abrasive-grain cutting [J]. International Journal of Machine Tools and Manufacture,2011,51(12):898-910. doi: 10.1016/j.ijmachtools.2011.08.006
    [17] 周雯雯, 王建青, 赵晶, 等. 单颗磨粒划擦SiCf/SiC陶瓷基复合材料的试验研究 [J]. 金刚石与磨料磨具工程,2021,41(1):51-57.

    ZHOU Wenwen, WANG Jianqing, ZHAO Jing, et al. Experimental research on single abrasive grain scratch SiCf/SiC ceramic matrix composite [J]. Diamond & Abrasives Engineering,2021,41(1):51-57.
    [18] ZHOU H, DING W, LIU C. Material removal mechanism of PTMCs in high-speed grinding when considering consecutive action of two abrasive grains [J]. The International Journal of Advanced Manufacturing Technology,2019,100(1):153-165.
    [19] LI Z, DING W, LIU C, et al. Grinding performance of TiCp/Ti-6Al-4V composites with CBN wheels, part II: Material removal behavior based on FEM [J]. Procedia CIRP,2018,77:525-528. doi: 10.1016/j.procir.2018.08.243
    [20] ZHANG Z, YAO P, WANG J, et al. Analytical modeling of surface roughness in precision grinding of particle reinforced metal matrix composites considering nanomechanical response of material [J]. International Journal of Mechanical Sciences,2019,157:243-253.
    [21] FARID A, GUO S. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites [J]. Acta Materialia,2007,55(4):1467-1477. doi: 10.1016/j.actamat.2006.10.009
    [22] 康泰胜. 钢结硬质合金的磨削 [J]. 模具技术,1986(6):75-76.

    KANG Taisheng. Grinding of steel bonded cemented carbide [J]. Die and Mould Technology,1986(6):75-76.
    [23] 尤显卿. 钢结硬质合金的加工 [J]. 机械科学与技术,1989(2):28-32.

    YOU Xianqing. Processing of steel bonded cemented carbide [J]. Mechanical Science and Technology for Aerospace Engineering,1989(2):28-32.
    [24] 孟昊. 钢结硬质合金轴的精密点磨削工艺及砂轮在位修整方法研究 [D]. 济南: 山东大学, 2016.

    MENG Hao. Precision point grinding technology for steel bonded carbide axles and on-machine conditioning of grinding wheel [D]. Jinan: Shandong University, 2016.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  658
  • HTML全文浏览量:  242
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-08-05
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回