CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脆性材料磨粒加工的纳米尺度去除机理

黄水泉 高尚 黄传真 黄含

黄水泉, 高尚, 黄传真, 黄含. 脆性材料磨粒加工的纳米尺度去除机理[J]. 金刚石与磨料磨具工程, 2022, 42(3): 257-267. doi: 10.13394/j.cnki.jgszz.2021.3009
引用本文: 黄水泉, 高尚, 黄传真, 黄含. 脆性材料磨粒加工的纳米尺度去除机理[J]. 金刚石与磨料磨具工程, 2022, 42(3): 257-267. doi: 10.13394/j.cnki.jgszz.2021.3009
HUANG Shuiquan, GAO Shang, HUANG Chuanzhen, HUANG Han. Nanoscale removal mechanisms in abrasive machining of brittle solids[J]. Diamond &Abrasives Engineering, 2022, 42(3): 257-267. doi: 10.13394/j.cnki.jgszz.2021.3009
Citation: HUANG Shuiquan, GAO Shang, HUANG Chuanzhen, HUANG Han. Nanoscale removal mechanisms in abrasive machining of brittle solids[J]. Diamond &Abrasives Engineering, 2022, 42(3): 257-267. doi: 10.13394/j.cnki.jgszz.2021.3009

脆性材料磨粒加工的纳米尺度去除机理

doi: 10.13394/j.cnki.jgszz.2021.3009
基金项目: 澳大利亚研究理事会探索研发项目(DP210102061);中国国家自然科学基金(51975091);河北省自然科学基金(E2022203123)。
详细信息
    作者简介:

    黄含,男,1964年生,教授。主要研究方向:先进制造技术和纳米力学表征。 E-mail: han.huang@uq.edu.au

  • 中图分类号: TG73

Nanoscale removal mechanisms in abrasive machining of brittle solids

  • 摘要: 以共价键或离子键结合的脆性单晶、多晶和光学玻璃是能源、通信、交通和医疗领域新兴微电子和光电器件的核心材料。为满足高性能器件的制造需求,脆性材料通常需要经过磨削、研磨、抛光等超精密磨粒加工,获得具有原子级光滑的表面、近无损伤的亚表面和微米甚至纳米级的加工精度。优化磨粒加工工艺不仅可以有效地提高加工效率,降低制造成本,还能够延长脆性材料元器件的服役寿命,但开发高效率、低损伤超精密磨粒加工技术需深入理解脆性材料纳米尺度的去除机理。本文基于划擦力学原理,揭示脆性材料纳米尺度磨粒加工去除的本质,阐明磨粒加工过程中脆性材料脆性–塑性转变去除的基本原理,概述单磨粒纳米划擦脆性材料的形变和去除机制,以及磨粒加工过程中脆性材料的去除机理及材料微观结构对其局部变形及后续去除的影响规律,提出实现脆性材料高效延性加工的控制策略,有助于推动脆性材料超精密磨粒加工技术的进一步发展。

     

  • 图  1  脆性材料磨粒划擦诱导的形变和断裂模式

    (a) 钝磨粒划擦诱导高脆性材料产生间断的锥形裂纹[12];(b) 锐磨粒划擦诱导高脆性材料产生中位裂纹、横向裂纹和径向裂纹,以及伴随横向裂纹及中位裂纹的塑性变形区[13-14];(c) 锐磨粒划擦较软的脆性材料产生具有微裂纹的近塑性变形[15];(d) 锐磨粒划擦脆性材料产生无裂纹的纯塑性变形[1]

    Figure  1.  Deformation and fracture modes of brittle materials in translating blunt and sharp contacts

    (a) Intermittent partial conical cracks on highly brittle surface induced by blunt abrasive scratching[12]; (b) Median crack, lateral crack and radical crack in highly brittle body induced by sharp abrasive scratching[13-14]; (c) Quasi-plastic deformation with micro cracks in relatively soft brittle material scratched by sharp abrasives[15]; (d) Plastic deformation without cracks in brittle solid induced by sharp abrasive scratching[1]

    图  2  脆性材料去除模式[1-2]

    (a) 钝磨粒多次重叠划擦导致破碎去除;(b) 锐磨粒划擦诱导材料横向断裂去除;(c) 锐磨粒划擦多晶材料诱导晶粒脱落去除;(d) 锐磨粒划擦产生挤压去除

    Figure  2.  Removal modes of brittle materials[1-2]

    (a) Fracture removal induced by overlapping scratches of blunt abrasive; (b) Lateral fracture generated by sharp abrasive scratching; (c) Grain ejecting produced by sharp abrasive scratching polycrystalline material; (d) Extrusion by sharp abrasive scratching

    图  3  脆性材料磨削加工示意图

    高于延性域加工临界切深dc的微裂纹深度为c,工件进给量为νw,砂轮旋转速度为νs

    Figure  3.  Surface grinding of brittle materials with ductile machining

    Wheel rotational speed vs, showing chip with micro-cracks of depth c above critical cutting depth dc of workpiece infeed vw

    图  4  单晶材料脆性域纳米划擦的亚表面TEM显微图

    (a) 锐金刚石压头30 mN法向力划擦单晶Si;(b) 钝金刚石压头6 mN法向力划擦单晶GaAs[3];(c) 锐金刚石压头8 mN法向力划擦单晶GGG[29]

    Figure  4.  TEM micrographs of nano-scratched subsurfaces of single crystal materials in brittle regime

    (a) Single-crystal Si scratched with sharp diamond indenter at normal force of 30 mN; (b) Single-crystal GaAs[3] scratched with blunt diamond indenter at normal force of 6 mN; (c) Single-crystal GGG[29] scratched with sharp diamond indenter at normal force of 8 mN

    图  5  单晶材料延性域纳米划擦的亚表面TEM显微图

    (a) 锐金刚石压头25 mN法向力划擦单晶Si导致{111}晶面发生滑移;(b) 钝金刚石压头1 mN法向力划擦单晶GaAs[3]导致{111}晶面发生滑移;(c) 锐金刚石压头3 mN法向力划擦单晶GGG[30]导致{114}晶面发生滑移

    Figure  5.  TEM micrographs of nano-scratched subsurfaces of single crystal materials in ductile regime

    (a) Slip of {111} crystal planes when scratching single-crystal Si with sharp diamond indenter at normal force of 25 mN; (b) Slip of {111} crystal planes when scratching single-crystal GaAs[3] with blunt diamond indenter at normal force of 1 mN; (c) Slip of {114} crystal planes when scratching single-crystal GGG[30] with sharp diamond indenter at normal force of 3 mN

    图  6  尖锐金刚石压头划擦多晶AlN–2%Y2O3[40]的表面SEM显微图

    (a) 150 mN机械负载,压头半径90 nm;(b) 区域A的放大图;(c) 区域B的放大图

    Figure  6.  SEM of polycrystalline AlN–2%Y2O3[40] nano-scratched by sharp diamond indenter

    (a) Tip radius 90 nm, mechanical load of 150 mN; (b) Enlarged images of square A; (c) Enlarged image of square B

    图  7  单晶材料经金刚石砂轮脆性域磨削的亚表面TEM观测结果

    (a) 磨粒粒径为20 μm,单晶GaAs[46];(b) 磨粒粒径为20 μm,单晶YAG[9];(c) 磨粒粒径约3 μm,单晶Ga2O3[47]

    Figure  7.  Subsurface TEM micrographs of single crystals after brittle grinding with diamond grinding wheels

    (a) Single-crystal GaAs[46], grain size of 20 μm; (b) Single-crystal YAG[9], grain size of 20 μm; (c) Single-crystal Ga2O3[47], grain size of 3 μm

    图  8  单晶材料经金刚石砂轮延性域磨削的亚表面TEM显微图

    (a) 磨粒粒径为9.0 μm,材料为Ga2O3[48];(b) 磨粒粒径为5.0 μm,单晶GaN;(c) 磨粒粒径为2.5 μm,单晶YAG[9]; (d) 磨粒粒径为3.8 μm,单晶GGG[10]

    Figure  8.  Subsurface TEM micrographs of single-crystal materials after ductile grinding with diamond grinding wheels

    (a) Single-crystal Ga2O3[48], grain size of 9.0 μm; (b) Single-crystal GaN, grain size of 5.0 μm; (c) Single-crystal YAG[9], grain size of 2.5 μm; (d) Single-crystal GGG[10], grain size of 3.8 μm

    图  9  单晶金刚石磨削多晶SiC陶瓷[62]表面的SEM观测结果

    (a) 脆性域(hm=3 μm);(b) 准延性域(hm=0.02 μm)

    Figure  9.  Surface SEM micrographs of polycrystalline SiC ceramics[62] ground by single crystal diamond

    (a) Brittle (hm=3 μm); (b) Quasi-ductility (hm=0.02 μm)

    图  10  固结磨粒研磨硅酸盐玻璃[71]表面的SEM显微图

    (a) 脆性域(磨粒粒径为15.3 μm);(b) 准延性域(磨粒粒径为2.5 μm)

    Figure  10.  SEM micrographs of BK7 optical glass[71] surfaces lapped with fixed abrasive

    (a) Brittle regime (grain size of 15.3 μm); (b) Quasi-ductile regime (grain size of 2.5 μm)

  • [1] HUANG H, LI X, MU D, et al. Science and art of ductile grinding of brittle solids [J]. International Journal of Machine Tools and Manufacture,2020,161:103675. doi: 10.1016/j.ijmachtools.2020.103675
    [2] LAWN B R, BORRERO-LOPEZ O, HUANG H, et al. Micromechanics of machining and wear in hard and brittle materials [J]. Journal of the American Ceramic Society,2020,104(1):5-22. doi: 10.1111/jace.17502
    [3] WU Y, MU D, HUANG H. Deformation and removal of semiconductor and laser single crystals at extremely small scales [J]. International Journal of Extreme Manufacturing,2020,2(2):12006. doi: 10.1088/2631-7990/ab7a2a
    [4] SREEJITH P S, NGOI B K A. Material removal mechanisms in precision machining of new materials [J]. International Journal of Machine Tools and Manufacture,2001,41(12):1831-1843. doi: 10.1016/S0890-6955(01)00014-1
    [5] PEI Z J, FISHER G R, LIU J. Grinding of silicon wafers: A review from historical perspectives [J]. International Journal of Machine Tools and Manufacture,2008,48(12/13):1297-1307. doi: 10.1016/j.ijmachtools.2008.05.009
    [6] FENG P, WANG J, ZHANG J, et al. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: A critical review [J]. Ceramics International,2017,44:1227-1239. doi: 10.1016/j.ceramint.2017.10.050
    [7] YAN J, ZHANG Z, KURIYAGAWA T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide [J]. International Journal of Machine Tools and Manufacture,2009,49(5):366-374. doi: 10.1016/j.ijmachtools.2008.12.007
    [8] MUKAIDA M, YAN J. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo [J]. International Journal of Machine Tools and Manufacture,2017,115:2-14. doi: 10.1016/j.ijmachtools.2016.11.004
    [9] LI C, LI X, WU Y, et al. Deformation mechanism and force modelling of the grinding of YAG single crystals [J]. International Journal of Machine Tools and Manufacture,2019,143:23-37. doi: 10.1016/j.ijmachtools.2019.05.003
    [10] LI C, WU Y, LI X, et al. Deformation characteristics and surface generation modelling of crack-free grinding of GGG single crystals [J]. Journal of Materials Processing Technology,2020,279:116577. doi: 10.1016/j.jmatprotec.2019.116577
    [11] ZHANG C, RENTSCH R, BRINKSMEIER E. Advances in micro ultrasonic assisted lapping of microstructures in hard–brittle materials: A brief review and outlook [J]. International Journal of Machine Tools and Manufacture,2005,45(7/8):881-890. doi: 10.1016/j.ijmachtools.2004.10.018
    [12] LAWN B R. Partial cone crack formation in a brittle material loaded with a sliding spherical indenter [J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences,1967,299(1458):307-316. doi: 10.1098/rspa.1967.0138
    [13] LAWN B R, COOK R F. Probing material properties with sharp indenters: A retrospective [J]. Journal of Materials Science,2012,47:1-22. doi: 10.1007/s10853-011-5865-1
    [14] LAWN B, WILSHAW R. Indentation fracture: Principles and applications [J]. Journal of Materials Science,1975,10:1049-1081. doi: 10.1007/BF00823224
    [15] LAWN B R, PADTURE N P, CAIT H, et al. Making ceramics “ductile” [J]. Science,1994,263(5150):1114-1116. doi: 10.1126/science.263.5150.1114
    [16] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. Journal of Materials Research,2004,19(1):3-20. doi: 10.1557/jmr.2004.19.1.3
    [17] JUNG Y G, PAJARES A, BANERGEE R, et al. Strength of silicon, sapphire and glass in the subthreshold flaw region [J]. Acta Materialia,2004,52(12):3459-3466. doi: 10.1016/j.actamat.2004.03.043
    [18] XU H H, JAHANMIR S. Microfracture and material removal in scratching of alumina [J]. Journal of Materials Science,1995,30(9):2235-2247. doi: 10.1007/BF01184566
    [19] BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: A new technology for machining brittle materials [J]. Journal of Engineering for Industry,1991,113(2):184-189. doi: 10.1115/1.2899676
    [20] ZHONG Z W. Ductile or partial ductile mode machining of brittle materials [J]. The International Journal of Advanced Manufacturing Technology,2003,21:579-585. doi: 10.1007/s00170-002-1364-5
    [21] NEO W K, KUMAR A S, RAHMAN M. A review on the current research trends in ductile regime machining [J]. The International Journal of Advanced Manufacturing Technology,2012,63:465-480. doi: 10.1007/s00170-012-3949-y
    [22] WU H, MELKOTE S N. Study of ductile-to-brittle transition in single grit diamond scribing of silicon: Application to wire sawing of silicon wafers [J]. Journal of Engineering Materials and Technology,2012,134(4):041011. doi: 10.1115/1.4006177
    [23] BEAUCAMP A, SIMON P, CHARLTON P, et al. Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics [J]. International Journal of Machine Tools and Manufacture,2017,115:29-37. doi: 10.1016/j.ijmachtools.2016.11.006
    [24] NAKASUJI T, KODERA S, HARA S, et al. Diamond turning of brittle materials for optical components [J]. CIRP Annals-Manufacturing Technology,1990,39:89-92. doi: 10.1016/S0007-8506(07)61009-9
    [25] KOVALCHENKO A M. Studies of the ductile mode of cutting brittle materials (A review) [J]. Journal of Superhard Materials,2013,35:259-276. doi: 10.3103/S1063457613050018
    [26] HUANG H, LAWN B R, COOK R F, et al. Critique of materials‐based models of ductile machining in brittle solids [J]. Journal of the American Ceramic Society,2020,103:6096-6100. doi: 10.1111/jace.17344
    [27] MALKIN S, GUO C. Grinding technology: Theory and application of machining with abrasives [M]. Norwalk: Industrial Press Inc. , 2008.
    [28] HUANG H, LIU Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding [J]. International Journal of Machine Tools and Manufacture,2003,43:811-823. doi: 10.1016/S0890-6955(03)00050-6
    [29] LI C, ZHANG F, MENG B, et al. Research of material removal and deformation mechanism for single crystal GGG (Gd3Ga5O12) based on varied-depth nanoscratch testing [J]. Materials & Design,2017,125:180-188. doi: 10.1016/j.matdes.2017.04.018
    [30] LI C, ZHANG F, PIAO Y. Strain-rate dependence of surface/subsurface deformation mechanisms during nanoscratching tests of GGG single crystal [J]. Ceramics International,2019,45(12):15015-15024. doi: 10.1016/j.ceramint.2019.04.238
    [31] KOSMAC T, OBLAK C, JEVNIKAR P, et al. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic [J]. Dental Materials,1999,15(6):426-433. doi: 10.1016/S0109-5641(99)00070-6
    [32] WU H, ROBERTS S G, DERBY B. Residual stress and subsurface damage in machined alumina and alumina/silicon carbide nanocomposite ceramics [J]. Acta Materialia,2001,49(3):507-517. doi: 10.1016/S1359-6454(00)00333-5
    [33] COLILLA M, MANZANO M, VALLET-REGI M. Recent advances in ceramic implants as drug delivery systems for biomedical applications [J]. International Journal of Nanomedicine,2008,3(4):403-414. doi: 10.2147/IJN.S3548
    [34] YIN L, HUANG H. Ceramic response to high speed grinding [J]. Machining Science and Technology,2004,8(1):21-37. doi: 10.1081/MST-120034240
    [35] BOCANEGRA-BERNAL M H, MATOVIC B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures [J]. Materials Science and Engineering: A,2010,527(6):1314-1338. doi: 10.1016/j.msea.2009.09.064
    [36] XU H H, WEI L, JAHANMIR S. Influence of grain size on the grinding response of alumina [J]. Journal of the American Ceramic Society,1996,79:1307-1313. doi: 10.1111/j.1151-2916.1996.tb08589.x
    [37] XU H H, PADTURE N P, JAHANMIR S. Effect of microstructure on material‐removal mechanisms and damage tolerance in abrasive machining of silicon carbide [J]. Journal of the American Ceramic Society,1995,78(9):2443-2448. doi: 10.1111/j.1151-2916.1995.tb08683.x
    [38] XU H H K, JAHANMIR S, IVES L K. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina [J]. Machining Science and Technology,1997,1(1):49-66. doi: 10.1080/10940349708945637
    [39] XU H H, WEI L, JAHANMIR S. Grinding force and microcrack density in abrasive machining of silicon nitride [J]. Journal of Materials Research,1995,10(12):3204-3209. doi: 10.1557/JMR.1995.3204
    [40] CAI L, GUO X, GAO S, et al. Material removal mechanism and deformation characteristics of AlN ceramics under nanoscratching [J]. Ceramics International,2019,45(16):20545-20554. doi: 10.1016/j.ceramint.2019.07.034
    [41] YIN L, HUANG H, RAMESH K, et al. High speed versus conventional grinding in high removal rate machining of alumina and alumina-titania [J]. International Journal of Machine Tools and Manufacture,2005,45(7/8):897-907. doi: 10.1016/j.ijmachtools.2004.10.016
    [42] COOK R F, PHARR G M. Direct observation and analysis of indentation cracking in glasses and ceramics [J]. Journal of the American Ceramic Society,1990,73(4):787-817. doi: 10.1111/j.1151-2916.1990.tb05119.x
    [43] BURGHARD Z, ZIMMERMANN A, RODEL J, et al. Crack opening profiles of indentation cracks in normal and anomalous glasses [J]. Acta Materialia,2004,52(2):293-297. doi: 10.1016/j.actamat.2003.09.014
    [44] GU W, YAO Z, LIANG X. Material removal of optical glass BK7 during single and double scratch tests [J]. Wear,2011,270(3):241-246. doi: DOI:10.1016/j.wear.2010.10.064
    [45] LEE K, MARIMUTHU K P, KIM C L, et al. Scratch-tip-size effect and change of friction coefficient in nano/micro scratch tests using XFEM [J]. Tribology International,2018,120:398-410. doi: 10.1016/j.triboint.2018.01.003
    [46] LI X, HUANG S, WU Y, et al. Performance evaluation of graphene oxide nanosheet water coolants in the grinding of semiconductor substrates [J]. Precision Engineering,2019,60:291-298. doi: 10.1016/j.precisioneng.2019.08.016
    [47] WANG Y, LI X, WU Y, et al. The removal mechanism and force modelling of gallium oxide single crystal in single grit grinding and nanoscratching [J]. International Journal of Mechanical Sciences,2021,204:106562. doi: 10.1016/j.ijmecsci.2021.106562
    [48] GAO S, WU Y, KANG R, et al. Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3 [J]. Materials Science in Semiconductor Processing,2018,79:165-170. doi: 10.1016/j.mssp.2017.12.017
    [49] ZHANG Z, WU Y, HUANG H. New deformation mechanism of soft-brittle CdZnTe single crystals under nanogrinding [J]. Scripta Materialia,2010,63(6):621-624. doi: 10.1016/j.scriptamat.2010.05.043
    [50] IRWAN R, HUANG H, ZHENG H Y, et al. Mechanical properties and material removal characteristics of soft-brittle HgCdTe single crystals [J]. Materials Science and Engineering: A,2013,559:480-485. doi: 10.1016/j.msea.2012.08.129
    [51] MALKIN S, HWANG T W. Grinding mechanisms for ceramics [J]. CIRP Annals-Manufacturing Technology,1996,45(2):569-580. doi: 10.1016/S0007-8506(07)60511-3
    [52] ZHANG B, HOWES T D. Material-removal mechanisms in grinding ceramics [J]. CIRP Annals Manufacturing Technology,1994,43(1):305-308. doi: 10.1016/S0007-8506(07)62219-7
    [53] ZAHEDI A, TAWAKOLI T, AKBARI J. Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics [J]. International Journal of Machine Tools and Manufacture,2015,90:16-28. doi: 10.1016/j.ijmachtools.2014.12.002
    [54] ZARUDI I, ZHANG L. On the limit of surface integrity of alumina by ductile-mode grinding [J]. Journal of Engineering Materials and Technology,2000,122(1):129-134. doi: 10.1115/1.482776
    [55] COOK R F. Fracture mechanics of sharp scratch strength of polycrystalline alumina [J]. Journal of the American Ceramic Society,2017,100(3):1146-1160. doi: 10.1111/jace.14634
    [56] YANG Z, ZHU L, LIN B, et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding [J]. Ceramics International,2019,45(7):8873-8889. doi: 10.1016/j.ceramint.2019.01.216
    [57] REKOW E, SILVA N, COELHO P, et al. Performance of dental ceramics: Challenges for improvements [J]. Journal of Dental Research,2011,90(8):937-952. doi: 10.1177/0022034510391795
    [58] YIN L, JAHANMIR S, IVES L K. Abrasive machining of porcelain and zirconia with a dental handpiece [J]. Wear,2003,255:975-989. doi: 10.1016/S0043-1648(03)00195-9
    [59] SHIH A J, SCATTERGOOD R O, CURRY A C, et al. Cost-effective grinding of zirconia using the dense vitreous bond silicon carbide wheel [J]. Journal of Manufacturing Science & Engineering,2003,125(2):297-303. doi: DOI:10.1115/1.1559167
    [60] ANAND P S P, ARUNACHALAM N, VIJAYARAGHAVAN L. Investigation on grindability of medical implant material using a silicon carbide wheel with different cooling conditions [J]. Procedia Manufacturing,2017,10:417-428. doi: 10.1016/j.promfg.2017.07.016
    [61] LEE S K, TANDON R, READEY M J, et al. Scratch damage in zirconia ceramics [J]. Journal of the American Ceramic Society,2000,83(6):1428-1432. doi: 10.1111/j.1151-2916.2000.tb01406.x
    [62] DAI J, SU H, YU T, et al. Experimental investigation on materials removal mechanism during grinding silicon carbide ceramics with single diamond grain [J]. Precision Engineering,2018,51:271-279. doi: 10.1016/j.precisioneng.2017.08.019
    [63] LI Z, ZHANG F, LUO X. Subsurface damages beneath fracture pits of reaction-bonded silicon carbide after ultra-precision grinding [J]. Applied Surface Science,2018,448:341-350. doi: 10.1016/j.apsusc.2018.04.038
    [64] BORRERO-LOPEZ O, ORTIZ A L, GUIBERTEAU F, et al. Improved sliding‐wear resistance in in situ‐toughened silicon carbide [J]. Journal of the American Ceramic Society,2005,88(12):3531-3534. doi: 10.1111/j.1551-2916.2005.00628.x
    [65] PADTURE N P, EVANS C J, XU H H, et al. Enhanced machinability of silicon carbide via microstructural design [J]. Journal of the American Ceramic Society,1995,78(1):215-217. doi: 10.1111/j.1151-2916.1995.tb08386.x
    [66] YIN L, VANCOILLE E Y J, RAMESH K, et al. Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining [J]. International Journal of Machine Tools and Manufacture,2004,44(6):607-615. doi: 10.1016/j.ijmachtools.2003.12.006
    [67] AGARWAL S, RAO P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding [J]. International Journal of Machine Tools and Manufacture,2008,48(6):698-710. doi: 10.1016/j.ijmachtools.2007.10.013
    [68] LEE S K, LEE K S, LAWN B R, et al. Effect of starting powder on damage resistance of silicon nitrides [J]. Journal of the American Ceramic Society,1998,81(8):2061-2070. doi: 10.1111/j.1151-2916.1998.tb02588.x
    [69] HUANG H, YIN L, ZHOU L. High speed grinding of silicon nitride with resin bond diamond wheels [J]. Journal of Materials Processing Technology,2003,141:329-336. doi: 10.1016/S0924-0136(03)00284-X
    [70] AZARHOUSHANG B, SOLTANI B, ZAHEDI A. Laser-assisted grinding of silicon nitride by picosecond laser [J]. The International Journal of Advanced Manufacturing Technology,2017,93(3/4):2517-2529. doi: 10.1007/s00170-017-0440-9
    [71] HUANG S, LI X, YU B, et al. Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping [J]. Journal of Materials Processing Technology,2020,277:116444. doi: 10.1016/j.jmatprotec.2019.116444
    [72] WU Y Q, HUANG H, ZOU J, et al. Nanoscratch-induced phase transformation of monocrystalline Si [J]. Scripta Materialia,2010,63(8):847-850. doi: 10.1016/j.scriptamat.2010.06.034
    [73] MYLVAGANAM K, ZHANG L C. Nanotwinning in monocrystalline silicon upon nanoscratching [J]. Scripta Materialia,2011,65(3):214-216. doi: 10.1016/j.scriptamat.2011.04.012
    [74] LIU H, XIE W, SUN Y, et al. Investigations on brittle-ductile cutting transition and crack formation in diamond cutting of mono-crystalline silicon [J]. The International Journal of Advanced Manufacturing Technology,2018,95:317-326. doi: 10.1007/s00170-017-1108-1
    [75] LI C, PIAO Y, MENG B, et al. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals [J]. International Journal of Machine Tools and Manufacture,2022,172:103827. doi: 10.1016/j.ijmachtools.2021.103827
    [76] WANG J, GUO B, ZHAO Q, et al. Dependence of material removal on crystal orientation of sapphire under cross scratching [J]. Journal of the European Ceramic Society,2017,37(6):2465-2472. doi: 10.1016/j.jeurceramsoc.2017.01.032
    [77] DEMIR E, MERCAN C. A physics-based single crystal plasticity model for crystal orientation and length scale dependence of machining response [J]. International Journal of Machine Tools and Manufacture,2018,134:25-41. doi: 10.1016/j.ijmachtools.2018.06.004
    [78] LUO Q, LU J, XU X. Study on the processing characteristics of SiC and sapphire substrates polished by semi-fixed and fixed abrasive tools [J]. Tribology International,2016,104:191-203. doi: 10.1016/j.triboint.2016.09.003
    [79] HERMAN D, KRZOS J. Influence of vitrified bond structure on radial wear of CBN grinding wheels [J]. Journal of Materials Processing Technology,2009,209:5377-5386. doi: 10.1016/j.jmatprotec.2009.03.013
    [80] ZHOU Y, ATWOOD M, GOLINI D, et al. Wear and self-sharpening of vitrified bond diamond wheels during sapphire grinding [J]. Wear,1998,219(1):42-45. doi: 10.1016/S0043-1648(98)00230-0
    [81] HUANG H, CHEN W, YIN L, et al. Micro/meso ultra precision grinding of fibre optic connectors [J]. Precision Engineering,2004,28(1):95-105. doi: 10.1016/j.precisioneng.2003.08.001
    [82] AXINTE D, BUTLER-SMITH P, AKGUN C, et al. On the influence of single grit micro-geometry on grinding behavior of ductile and brittle materials [J]. International Journal of Machine Tools and Manufacture,2013,74:12-18. doi: 10.1016/j.ijmachtools.2013.06.002
  • 加载中
图(10)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  30
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 录用日期:  2022-05-20
  • 收稿日期:  2022-04-23
  • 修回日期:  2022-05-14
  • 网络出版日期:  2022-07-13

目录

    /

    返回文章
    返回