CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物组织磨削加工研究

吴茂忠 王成勇 郑李娟 陈志桦 刘志华

吴茂忠, 王成勇, 郑李娟, 陈志桦, 刘志华. 生物组织磨削加工研究[J]. 金刚石与磨料磨具工程, 2022, 42(2): 137-149. doi: 10.13394/j.cnki.jgszz.2021.0123
引用本文: 吴茂忠, 王成勇, 郑李娟, 陈志桦, 刘志华. 生物组织磨削加工研究[J]. 金刚石与磨料磨具工程, 2022, 42(2): 137-149. doi: 10.13394/j.cnki.jgszz.2021.0123
WU Maozhong, WANG Chengyong, ZHENG Lijuan, CHEN Zhihua, LIU Zhihua. Research on grinding of biological tissue[J]. Diamond &Abrasives Engineering, 2022, 42(2): 137-149. doi: 10.13394/j.cnki.jgszz.2021.0123
Citation: WU Maozhong, WANG Chengyong, ZHENG Lijuan, CHEN Zhihua, LIU Zhihua. Research on grinding of biological tissue[J]. Diamond &Abrasives Engineering, 2022, 42(2): 137-149. doi: 10.13394/j.cnki.jgszz.2021.0123

生物组织磨削加工研究

doi: 10.13394/j.cnki.jgszz.2021.0123
基金项目: 国家自然科学基金(51735003);国家自然科学基金面上项目(52175386);国家自然科学基金青年基金(52105435)
详细信息
    作者简介:

    吴茂忠,男,1994年生,博士研究生。主要研究方向:医疗器械设计制造。 E-mail: 546903844@qq.com

    通讯作者:

    王成勇,男,1964年生,教授、博士生导师。主要研究方向:难加工材料的高速高效精密超精密加工理论、工艺、刀具与装备技术。E-mail: 112050772@qq.com

  • 中图分类号: TG58; TG71; R608

Research on grinding of biological tissue

  • 摘要: 生物组织的磨削加工本质上是通过细小磨粒对软硬组织进行少量多次去除,保证操作的精细度和安全性。磨削加工是一种能量密集型的加工方式,加工过程中会产生较高的磨削热和磨削力并直接作用于人体,有可能造成周围组织损伤,影响手术效果。介绍了骨组织磨削、皮肤磨削、齿科磨削和血管钙化组织磨削等生物组织的固结磨料加工的研究情况,并提出后期研究主要方向。

     

  • 图  1  神经外科骨磨冷却对比试验

    Figure  1.  Comparative experiment of bone grinding cooling in neurosurgery

    图  2  纳米粒子实现摩擦面自我修复

    Figure  2.  Nanoparticles realize self-healing of friction surfaces

    图  3  经皮椎间孔镜结合镜下磨钻治疗复杂退变性腰椎间盘突出症

    Figure  3.  Treatment of complex degenerative lumbar disc herniation with percutaneous foraminoscopy combined with endoscopic grinding

    图  4  下颌骨和下颌角

    Figure  4.  Mandible and mandibular angle

    图  5  外眦区磨皮

    Figure  5.  Epicanthal dermabrasion

    图  6  外眦区磨皮术前和术后的对比

    Figure  6.  Comparison of the effect of microdermabrasion in the lateral canthal area before and after surgery

    图  7  微晶磨皮术

    Figure  7.  Microdermabrasion

    图  8  氧化铝微晶体SEM

    Figure  8.  SEM image of alumina microcrystals

    图  9  高速气涡轮手机

    Figure  9.  High-speed air driven handpieces

    图  10  牙齿剖面结构图

    Figure  10.  Section structure of teeth

    图  11  牙釉质磨削表层损伤

    Figure  11.  Surface damage of enamel grinding

    图  12  有无超声振动辅助磨削表面结构对比

    Figure  12.  Comparison of surface structure with and without ultrasonic vibration assisted grinding

    图  13  血管钙化组织及其形成过程

    Figure  13.  Vascular calcified tissue and its formation process

    图  14  血管钙化组织旋磨术

    Figure  14.  Rotational atherectomy for vascular calcification

    图  15  RA旋磨系统

    Figure  15.  RA grinding system

    图  16  OA旋磨系统

    Figure  16.  OA grinding system

    图  17  同心安装的旋磨头结构

    Figure  17.  Concentric mounted rotary grinding head structure

    图  18  偏心安装的旋磨头结构

    Figure  18.  Eccentrically mounted rotary grinding head structure

    图  19  差异性切割原理

    Figure  19.  Differential cutting principle

    表  1  生物组织的磨削加工

    Table  1.   Grinding in medical operation

    骨组织磨削皮肤磨削牙科磨削血管钙化组织磨削
    金刚石线锯、磨钻金刚石磨头金刚石车针血管钙化组织旋磨头
    下载: 导出CSV

    表  2  医疗手术磨削加工当前研究总结和未来研究方向

    Table  2.   Summary of current research and future research directions in medical surgical grinding

    当前研究情况未来研究方向
    磨削类型研究类别研究重点
    骨组织磨削神经外科骨磨磨削温度预测●逆传热方法和有限元热模型
    ●骨的热导率、骨的热通量






    提高磨削质量
    ●磨削机制研究
    ●磨削参数优化
    ●新的磨削方法
    ●引入冷却方法
    ●考虑材料影响
    ●创新磨削系统
    提高磨削效率
    ●系统磨削效率研究
    ●磨削参数优化
    ●磨削刀具设计
    ●磨削过程监控
    提高手术恢复率
    ●磨削损伤研究
    ●磨削机制研究
    ●磨削参数优化
    ●新的磨削方法
    ●引入冷却方法
    ●考虑材料影响









    磨削产热及
    温度变化
    ●磨削参数对磨削热的影响
    ●磨削产热和传递
    ●磨削过程温度变化
    ●磨削热造成的神经坏死
    降低磨削温度●冷却剂冷却(盐水冷却、低温喷雾、纳米粒子射流喷雾)
    ●能场辅助(超声振动辅助)
    ●研制新型磨削工具(微结构、涂层)
    脊柱骨磨削磨削方式和
    安全性
    ●手术中的磨削方式(由浅入深、逐层进行)
    ●降低磨削热,减少对神经根的损伤(水冷却)
    ●结合各种内镜技术治疗复杂的脊柱疾病
    下颌角磨削安全性和
    有效性
    ●下颌角肥大矫正手术中的安全性和有效性
    皮肤磨削传统磨皮●磨皮在皮肤治疗中的有效性
    ●针对不同皮肤病(皱纹、痤疮、疤痕等)磨削工具的选择
    ●如何减少并发症的发生
    ●磨皮对特定药物经皮给药的有效性
    微晶磨皮
    齿科磨削牙体磨削●磨削过程的磨削力和振动
    ●磨削热产生、传递和对周围神经的损伤
    ●磨削参数对表面质量的影响
    ●磨削表面裂纹的产生
    修复体磨削●材料内部热应力的产生和裂纹的扩展
    ●温度变化诱发的相变行为
    ●修复体磨削去除机理(脆性断裂和塑性去除)
    血管钙化组织磨削磨削热●磨削参数对磨削热的影响
    ●磨削热的产生以及潜在的热损伤
    ●有效降低磨削热的方法(生理盐水冷却、磨削参数)
    磨削力●磨削参数对磨削力的影响
    ●磨头的运动和磨削力导致的并发症
    ●有效降低磨削力的方法(磨头结构、磨削方式和磨削参数)
    磨屑●磨屑的成屑机理
    ●磨削参数对磨屑大小和形状的影响
    ●磨屑在血管壁上的聚集
    磨削损伤●磨削对周围血管和血液中细胞造成的损伤
    下载: 导出CSV
  • [1] ZHANG Y, ROBLES-LINARES J A, CHEN L, et al. Advances in machining of hard tissues—From material removal mechanisms to tooling solutions [J]. International Journal of Machine Tools and Manufacture,2022,172:103838. doi: 10.1016/j.ijmachtools.2021.103838
    [2] 王成勇, 陈志桦, 陈华伟, 等. 生物骨材料切除理论研究综述 [J]. 机械工程学报,2021,57(11):2-32.

    WANG Chengyong, CHEN Zhihua, CHEN Huawei, et al. A review on cutting mechanism for bone material [J]. Chinese Journal of Mechanical Engineering,2021,57(11):2-32.
    [3] 柏伟, 潘鹏飞, 舒利明, 等. 骨组织超声辅助切削切屑形成与裂纹扩展机理 [J]. 机械工程学报,2021,57(11):69-77.

    BAI Wei, PAN Pengfei, SHU Liming, et al. Mechanism of chip formation and crack propagation in ultrasonically assisted cutting of bone tissue [J]. Chinese Journal of Mechanical Engineering,2021,57(11):69-77.
    [4] 杨敏, 李长河, 张彦彬, 等. 神经外科颅骨磨削温度场预测新模型 [J]. 机械工程学报,2018,54(23):215-222. doi: 10.3901/JME.2018.23.215

    YANG Min, LI Changhe, ZHANG Yanbin, et al. A new model for predicting neurosurgery skull bone grinding temperature field [J]. Chinese Journal of Mechanical Engineering,2018,54(23):215-222. doi: 10.3901/JME.2018.23.215
    [5] 隋建波, 郭凯杰, 罗嘉琪, 等. 全髋关节置换术髋臼铣削表面质量研究 [J]. 机械工程学报,2021,57(11):93-101.

    SUI Jianbo, GUO Kaijie, LUO Jiaqi, et al. Study on surface quality of acetabular reaming in total hip replacement [J]. Chinese Journal of Mechanical Engineering,2021,57(11):93-101.
    [6] SHIH A J, TAI B L, ZHANG L, et al. Prediction of bone grinding temperature in skull base neurosurgery [J]. CIRP Annals-Manufacturing Technology,2012,61(1):307-310. doi: 10.1016/j.cirp.2012.03.078
    [7] TAI B L, ZHANG L, WANG A C, et al. Temperature prediction in high speed bone grinding using motor PWM signal [J]. Medical Engineering & Physics,2013,35(10):1545-1549.
    [8] WANG G, ZHANG L, WANG X, et al. An inverse method to reconstruct the heat flux produced by bone grinding tools [J]. International Journal of Thermal Sciences,2016,101:85-92. doi: 10.1016/j.ijthermalsci.2015.10.021
    [9] YANG M, LI C, LI B, et al. Advances and patents about medical surgical operation skull grinding equipment [J]. Recent Patents on Engineering,2016,10(1):12-27. doi: 10.2174/2212703802666150424233003
    [10] ZHANG L, TAI B L, WANG G, et al. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery [J]. Medical Engineering & Physics,2013,35(10):1391-1398.
    [11] SHAKOURI E, MIRFALLAH P. Infrared thermography of high-speed grinding of bone in skull base neurosurgery [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine,2019,233(6):648-656. doi: 10.1177/0954411919845730
    [12] BABBAR A, JAIN V, GUPTA D. In vivo evaluation of machining forces, torque, and bone quality during skull bone grinding [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine,2020,234(6):626-638. doi: 10.1177/0954411920911499
    [13] ZHANG L, ZOU L, WEN D, et al. Investigation of the effect of process parameters on bone grinding performance based on on-line measurement of temperature and force sensors [J]. Sensors,2020,20(11):3325. doi: 10.3390/s20113325
    [14] KONDO S, OKADA Y, ISEKI H, et al. Thermological study of drilling bone tissue with a high-speed drill [J]. Neurosurgery,2000,46(5):1162-1168. doi: 10.1097/00006123-200005000-00029
    [15] ZHANG L, TAI B L, WANG A C, et al. Mist cooling in neurosurgical bone grinding [J]. CIRP Annals,2013,62(1):367-370. doi: 10.1016/j.cirp.2013.03.125
    [16] YANG M, LI C H, ZHANG Y B, et al. Research on microscale skull grinding temperature field under different cooling conditions [J]. Applied Thermal Engineering,2017,126:525-537. doi: 10.1016/j.applthermaleng.2017.07.183
    [17] ENOMOTO T, SHIGETA H, SUGIHARA T, et al. A new surgical grinding wheel for suppressing grinding heat generation in bone resection [J]. CIRP Annals,2014,63(1):305-308. doi: 10.1016/j.cirp.2014.03.026
    [18] BABBAR A, JAIN V, GUPTA D. Preliminary investigations of rotary ultrasonic neurosurgical bone grinding using Grey-Taguchi optimization methodology [J]. Grey Systems: Theory and Application, 2020, 10(4): 479-493.
    [19] 田伟, 郎昭. 进一步促进骨磨削技术在脊柱外科的应用 [J]. 中华医学杂志,2015(13):961-964. doi: 10.3760/cma.j.issn.0376-2491.2015.13.001

    TIAN Wei, LANG Zhao. Further promote the application of bone grinding technology in spine surgery [J]. National Medical Journal of China,2015(13):961-964. doi: 10.3760/cma.j.issn.0376-2491.2015.13.001
    [20] 蔡敬. 微型磨钻在颈前路手术中的应用与配合 [J]. 全科护理,2011,9(15):1368-1369.

    CAI Jing. Application of micro-grinding drill for patients accepting cervical anterior approach operation and cooperation [J]. Chinese General Nursing,2011,9(15):1368-1369.
    [21] 孟志斌, 付昆, 李俊, 等. Midas Rex高速磨钻在腰椎后路显微内窥镜下手术中的应用 [J]. 中国脊柱脊髓杂志,2007,17(11):813-817. doi: 10.3969/j.issn.1004-406X.2007.11.004

    MENG Zhibin, FU Kun, LI Jun, et al. Application of Midas Rex high speed drill in the posterior microendoscopic surgery [J]. Chinese Journal of Spine and Spinal Cord,2007,17(11):813-817. doi: 10.3969/j.issn.1004-406X.2007.11.004
    [22] 王海蛟, 李玉伟, 许纬洲. 微型磨钻在颈椎前路手术中的应用 [J]. 中华骨科杂志,1999,19(5):313.

    WANG Haijiao, LI Yuwei, XU Weizhou. Application of micro-drill in anterior cervical surgery [J]. Chinese Journal of Orthopaedics,1999,19(5):313.
    [23] 马钧峰, 汪伟, 江泽华, 等. 显微镜下高速磨钻减压与传统咬骨钳减压在颈椎病颈前颅内固定融合术中的应用比较 [J]. 山东医药,2019,59(17):76-78. doi: 10.3969/j.issn.1002-266X.2019.17.022

    MA Junfeng, WANG Wei, JIANG Zehua, et al. Comparison of application of high-speed drill decompression under microscope and traditional rongeur decompression in anterior cervical internal fixation and fusion for cervical spondylosis [J]. Shandong Medical Journal,2019,59(17):76-78. doi: 10.3969/j.issn.1002-266X.2019.17.022
    [24] HOSONO N, MIWA T, MUKAI Y, et al. Potential risk of thermal damage to cervical nerve roots by a high-speed drill [J]. The Journal of Bone and Joint Surgery. British Volume,2009,91(11):1541-1544.
    [25] 徐国康, 苏棋, 屠玉兰. 经皮椎间孔镜结合镜下磨钻技术治疗复杂退变性腰椎间盘突出症 [J]. 浙江中西医结合杂志,2019,29(10):851-853, 875. doi: 10.3969/j.issn.1005-4561.2019.10.023

    XU Guokang, SU Qi, TU Yulan. Treatment of complex degenerative lumbar disc herniation with percutaneous trans foraminal endoscopy combined with microscopic drilling [J]. Zhejiang Journal of Integrated Traditional Chinese and Western Medicine,2019,29(10):851-853, 875. doi: 10.3969/j.issn.1005-4561.2019.10.023
    [26] 徐红霞, 阎晓辉, 薛艳斌, 等. “磨削法” 在下颌角肥大矫正术中的应用 [J]. 海军总医院学报,2009,22(2):80-82. doi: 10.3969/j.issn.1009-3427.2009.02.007

    XU Hongxia, YAN Xiaohui, XUE Yanbin, et al. Application of grinding method in the correction of prominent mandibular angle [J]. Journal of Naval General Hospital,2009,22(2):80-82. doi: 10.3969/j.issn.1009-3427.2009.02.007
    [27] RIEFKOHL R, GEORGIADE G S, GEORGIADE N G. Masseter muscle hypertrophy [J]. Annals of Plastic Surgery,1984,12(6):528-532. doi: 10.1097/00000637-198406000-00007
    [28] 徐士亮, 罗锦辉, 惠俐, 等. 单纯下颌骨磨削法矫治下颌角肥大 [J]. 中国美容整形外科杂志,2006,17(4):250-252. doi: 10.3969/j.issn.1673-7040.2006.04.004

    XU Shiliang, LUO Jinhui, HUI Li, et al. A simple abrasive osteoplasty for the prominent mandibular angle correction [J]. Chinese Journal of Aesthetic and Plastic Surgery,2006,17(4):250-252. doi: 10.3969/j.issn.1673-7040.2006.04.004
    [29] 赵菲菲. 磨削术在下颌角肥大美容整形中的应用 [J]. 医学美学美容,2013(12):49-50.

    ZHAO Feifei. The application of grinding in the mandibular angle hypertrophy cosmetic plastic surgery [J]. Medical Aesthetics and Beauty,2013(12):49-50.
    [30] SONG G, ZONG X, GUO X, et al. Single-stage mandibular curved ostectomy on affected side combined with bilateral outer cortex grinding for correction of facial asymmetry: Indications and outcomes [J]. Aesthetic Plastic Surgery,2019,43(3):733-741. doi: 10.1007/s00266-019-01364-y
    [31] 方方. 皮肤磨削术及其应用 [J]. 中国美容医学,2020,29(4):1-7.

    FANG Fang. Dermabrasion and its application [J]. Chinese Journal of Aesthetic Medicine,2020,29(4):1-7.
    [32] COLEMAN W P, HANKE C W, ORENTREICH N, et al. A history of dermatologic surgery in the United States [J]. Dermatologic Surgery,2000,26(1):5-11. doi: 10.1046/j.1524-4725.2000.00401.x
    [33] ASHIQUE K T, KALIYADAN F, GEORGE R R. Dermabrasion of the recipient skin in vitiligo surgery: An easier way out [J]. Indian Journal of Dermatology, Venereology and Leprology,2018,84(4):498-499.
    [34] GRUBER R, MIRANDA E, ANTONY A. Dermabrasion for rhytids in the lateral canthal region [J]. Aesthetic Plastic Surgery,2007,31(6):688-691. doi: 10.1007/s00266-006-0189-2
    [35] 童和林, 蔡光辉, 毛辉, 等. 皮肤磨削术在皮肤瘢痕治疗中的应用 [J]. 实用皮肤病学杂志,2013,6(1):26-27.

    TONG Helin, CAI Guanghui, MAO Hui, et al. The application of dermabrasion in the treatment of skin scar [J]. Journal of Practical Dermatology,2013,6(1):26-27.
    [36] KIM E K, HOVSEPIAN R V, MATHEW P, et al. Dermabrasion [J]. Clinics in Plastic Surgery,2011,38(3):391-395. doi: 10.1016/j.cps.2011.05.001
    [37] SMALL R. Aesthetic procedures in office practice [J]. American Family Physician,2009,80(11):1231-1237.
    [38] TSAI R Y, WANG C N, CHEN L H. Aluminum oxide crystal microdermabrasion: A new technique for treating facial scarring [J]. Dermatologic Surgery,1995,21(6):539-542. doi: 10.1111/j.1524-4725.1995.tb00258.x
    [39] TAN M H, SPENCER J M, PIRES L M, et al. The evaluation of aluminum oxide crystal microdermabrasion for photodamage [J]. Dermatologic Surgery,2001,27(11):943-949.
    [40] 吴世雄, 倪湧潜, 王成勇, 等. 牙釉质表面高速铣削机理研究 [J]. 机械工程学报,2021,57(11):78-92.

    WU Shixiong, NI Yongqian, WANG Chengyong, et al. Research on the mechanism of the high speed milling of enamel surface [J]. Chinese Journal of Mechanical Engineering,2021,57(11):78-92.
    [41] WU S X, LI K Q , ZHU W Z, et al. Machinability of high-speed enamel cutting with carbide bur [J]. Journal of the Mechanical Behavior of Biomedical Materials,2019,103(7):103529. doi: 10.1016/j.jmbbm.2019.103529
    [42] ZACHRISSON B U, MJÖR I A. Remodeling of teeth by grinding [J]. American Journal of Orthodontics,1975,68(5):545-553. doi: 10.1016/0002-9416(75)90085-8
    [43] 赵丹娜, 王成勇, 周绍波, 等. 口腔陶瓷修复材料加工研究 [J]. 金刚石与磨料磨具工程,2017,37(1):34-42.

    ZHAO Dannan, WANG Chengyong, ZHOU Shaobo, et al. Review on dental ceramics grinding [J]. Diamond & Abrasives Engineering,2017,37(1):34-42.
    [44] 李峰. 车针与牙釉质的高速磨削行为研究 [D]. 浙江: 浙江中医药大学, 2017.

    LI Feng. Research on high speed cutting behavior of bur and enamel [D]. Zhejiang: Zhejiang Chinese Medical University, 2017.
    [45] 耿克涛. 牙体预备高速磨削热-力耦合实验及仿真研究 [D]. 天津: 天津大学, 2012.

    GENG Ketao. Experimental investigation and numerical simulation of cutting force-thermal coupled analysis of enamel and dental ceramics in tooth preparation [D]. Tianjin: Tianjin University, 2012.
    [46] LI Q Z, WANG C Y, ZHENG L J, et al. Machinability of enamel under grinding process using diamond dental burrs [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine,2019,233(11):1151-1164. doi: 10.1177/0954411919873804
    [47] XU H H K, KELLY J R, JAHANMIR S, et al. Enamel subsurface damage due to tooth preparation with diamonds [J]. Journal of Dental Research,1997,76(10):1698-1706. doi: 10.1177/00220345970760101201
    [48] WILSON G J, WALSH L J. Temperature changes in dental pulp associated with use of power grinding equipment on equine teeth [J]. Australian Veterinary Journal,2005,83(1/2):75-77.
    [49] ZHENG K, LI Z, LIAO W, et al. Friction and wear performance on ultrasonic vibration assisted grinding dental zirconia ceramics against natural tooth [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2017,39(3):833-843. doi: 10.1007/s40430-016-0531-9
    [50] TENG Z, ZHANG Y, HUANG Y, et al. Material properties of components in human carotid atherosclerotic plaques: A uniaxial extension study [J]. Acta Biomaterialia,2014,10(12):5055-5063. doi: 10.1016/j.actbio.2014.09.001
    [51] 陈春寿. 血管斑块的形成及药物对斑块的质变 [J]. 医药前沿,2018,8(9):33-34. doi: 10.3969/j.issn.2095-1752.2018.09.022

    CHEN Chunshou. The formation of vascular plaque and the qualitative change of drug to plaque [J]. Journal of Frontiers of Medicine,2018,8(9):33-34. doi: 10.3969/j.issn.2095-1752.2018.09.022
    [52] 刘瑶. 心血管钙化组织磨削机理及其应用研究 [D]. 上海: 东华大学, 2018.

    LIU Yao. Investigation of cardiovascular calcified plaque grinding mechanism and its application [D]. Shanghai: Donghua University, 2018.
    [53] CARRASCOSA P M, CAPUÑAY C M, GARCIA-MERLETTI P, et al. Characterization of coronary atherosclerotic plaques by multidetector computed tomography [J]. The American Journal of Cardiology,2006,97(5):598-602. doi: 10.1016/j.amjcard.2005.09.096
    [54] TOMEY M I, KINI A S, SHARMA S K. Current status of rotational atherectomy [J]. JACC: Cardiovascular Interventions,2014,7(4):345-353. doi: 10.1016/j.jcin.2013.12.196
    [55] SOTOMI Y, SHLOFMITZ R A, COLOMBO A, et al. Patient selection and procedural considerations for coronary orbital atherectomy system [J]. Interventional Cardiology Review,2016,11(1):33.
    [56] STANILOAE C S, KORABATHINA R. Orbital atherectomy: Device evolution and clinical data [J]. The Journal of Invasive Cardiology,2014,26(5):215-219.
    [57] 李雄, 刘芳菲, 彭晖, 等. 冠状动脉钙化及旋磨术研究进展 [J]. 心脑血管病防治,2010,10(6):460-461.

    LI Xiong, LIU Fangfei, PENG Hui, et al. Research progress of coronary artery calcification and spiral grinding [J]. Cardio-cerebrovascular Disease Prevention and Treatment,2010,10(6):460-461.
    [58] 姜志胜. 动脉粥样硬化学 [M]. 北京: 科学出版社, 2017: 16-20.

    JIANG Zhisheng. Atherosclerosis [M]. Beijing: Science Press, 2017: 16-20.
    [59] MATSUO H, WATANABE S, WATANABE T, et al. Prevention of no-reflow/slow-flow phenomenon during rotational atherectomy—A prospective randomized study comparing intracoronary continuous infusion of verapamil and nicorandil [J]. American Heart Journal,2007,154(5):994.e1-994.e6. doi: 10.1016/j.ahj.2007.07.036
    [60] 汤佳旎, 刘学波. 旋磨术的临床应用现状 [J]. 国际心血管病杂志,2015,42(2):82-84. doi: 10.3969/j.issn.1673-6583.2015.02.006

    TANG Jiani, LIU Xuebo. Clinical application of rotary grinding [J]. International Journal of Cardiovascular Disease,2015,42(2):82-84. doi: 10.3969/j.issn.1673-6583.2015.02.006
    [61] REISMAN M, SHUMAN B J, HARMS V. Analysis of heat generation during rotational atherectomy using different operational techniques [J]. Catheterization and Cardiovascular Diagnosis,1998,44(4):453-455. doi: 10.1002/(SICI)1097-0304(199808)44:4<453::AID-CCD21>3.0.CO;2-I
    [62] RAMAZANI-REND R, CHELIKANI S, SPARROW E M, et al. Experimental and numerical investigation of orbital atherectomy: Absence of cavitation [J]. Journal of Biomedical Science and Engineering,2010,3(11):1108-1116. doi: 10.4236/jbise.2010.311144
    [63] LIU Y, LI B, ZHENG Y, et al. Experiment and smooth particle hydrodynamics simulation of debris size in grinding of calcified plaque in atherectomy [J]. CIRP Annals,2017,66(1):325-328. doi: 10.1016/j.cirp.2017.04.090
    [64] LIU Y, LIU Y, ZHENG Y, et al. Catheter thermal energy generation and temperature in rotational atherectomy [J]. Medical Engineering & Physics,2019,70:29-38.
    [65] GADER A M, AL‐MASHHADANI S A, AL‐HARTHY S S. Direct activation of platelets by heat is the possible trigger of the coagulopathy of heat stroke [J]. British Journal of Haematology,1990,74(1):86-92. doi: 10.1111/j.1365-2141.1990.tb02543.x
    [66] RAO G H R, SMITH C M, ESCOLAR G, et al. Influence of heat on platelet biochemistry, structure, and function [J]. The Journal of Laboratory and Clinical Medicine,1993,122(4):455-464.
    [67] GEHANI A A, REES M R. Can rotational atherectomy cause thermal tissue damage? A study of the potential heating and thermal tissue effects of a rotational atherectomy device [J]. Cardiovascular and Interventional Radiology,1998,21(6):481-486. doi: 10.1007/s002709900308
    [68] ERBEL R, ZOTZ R. Letter by Erbel and Zotz regarding article,“north american expert review of rotational atherectomy”[J]. Circulation: Cardiovascular Interventions, 2019, 12(7): e008225.
    [69] LIU Y, LI B, KONG L, et al. Experimental and modeling study of temperature in calcified plaque grinding [J]. The International Journal of Advanced Manufacturing Technology,2018,99(1):1013-1021.
    [70] KIM M H, KIM H J, KIM N N, et al. A rotational ablation tool for calcified atherosclerotic plaque removal [J]. Biomedical Microdevices, 2011, 13(6): 963-971.
    [71] ADAMS G L, KHANNA P K, STANILOAE C S, et al. Optimal techniques with the diamondback 360 system achieve effective results for the treatment of peripheral arterial disease [J]. Journal of Cardiovascular Translational Research,2011,4(2):220-229. doi: 10.1007/s12265-010-9255-x
    [72] ZHENG Y H, BELMONT B, SHIH A J. Experimental investigation of the abrasive crown dynamics in orbital atherectomy [J]. Medical Engineering & Physics,2016,38(7):639-647.
    [73] ZHENG Y H, LIU Y, LIU Y, et al. Experimental investigation of the grinding force in rotational atherectomy [J]. Procedia Manufacturing,2016,5:838-848. doi: 10.1016/j.promfg.2016.08.069
    [74] SHIH A J, LIU Y, ZHENG Y. Grinding wheel motion, force, temperature, and material removal in rotational atherectomy of calcified plaque [J]. CIRP Annals,2016,65(1):345-348. doi: 10.1016/j.cirp.2016.04.012
    [75] HELGESON Z L, JENKINS J S, ABRAHAM J P, et al. Particle trajectories and agglomeration/accumulation in branching arteries subjected to orbital atherectomy [J]. The Open Biomedical Engineering Journal,2011,5:25. doi: 10.2174/1874120701105010025
    [76] AHN S S, AUTH D, MARCUS D R, et al. Removal of focal atheromatous lesions by angioscopically guided high-speed rotary atherectomy: Preliminary experimental observations [J]. Journal of Vascular Surgery,1988,7(2):292-300. doi: 10.1016/0741-5214(88)90148-6
    [77] ZACCA N M, RAIZNER A E, NOON G P, et al. Treatment of symptomatic peripheral atherosclerotic disease with a rotational atherectomy device [J]. The American Journal of Cardiology,1989,63(1):77-80. doi: 10.1016/0002-9149(89)91079-5
    [78] LIU Y, ZHENG Y, LI A D R, et al. Cutting of blood clots—Experiment and smooth particle Galerkin modelling [J]. CIRP Annals,2019,68(1):97-100. doi: 10.1016/j.cirp.2019.04.025
    [79] ISOM N, MASOOMI R, THORS A, et al. Guidewire fracture during orbital atherectomy for peripheral artery disease: insights from the manufacturer and user facility device experience database [J]. Catheterization and Cardiovascular Interventions,2019,93(2):330-334. doi: 10.1002/ccd.27933
    [80] 郑清春, 毛璐璐, 史于涛, 等. 仿生织构表面对人工髋关节副动压润滑性能及减摩性分析 [J]. 机械工程学报,2021,57(11):102-111.

    ZHENG Qingchun, MAO Lulu, SHI Yutao, et al. Analysis of biomimetic texture surface on dynamic compression lubrication and friction reduction of artificial hip pair [J]. Chinese Journal of Mechanical Engineering,2021,57(11):102-111.
    [81] 刘光, 郭雨润, 张力文, 等. 精准医疗器械生/机接触界面功能化机制研究 [J]. 机械工程学报,2021,57(11):33-43.

    LIU Guang, GUO Yurun, ZHANG Liwen, et al. The mechanisms of bio-instrument interfacial functionalization in precision medicine [J]. Chinese Journal of Mechanical Engineering,2021,57(11):33-43.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  48
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 录用日期:  2022-01-31
  • 收稿日期:  2022-01-01
  • 修回日期:  2022-01-20

目录

    /

    返回文章
    返回