CN 41-1243/TG ISSN 1006-852X

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高熵氧化物的研究进展与展望

张扬 邹芹 李艳国 李园园 徐江波 王明智

张扬, 邹芹, 李艳国, 李园园, 徐江波, 王明智. 高熵氧化物的研究进展与展望[J]. 金刚石与磨料磨具工程, 2022, 42(1): 30-41. doi: 10.13394/j.cnki.jgszz.2021.0091
引用本文: 张扬, 邹芹, 李艳国, 李园园, 徐江波, 王明智. 高熵氧化物的研究进展与展望[J]. 金刚石与磨料磨具工程, 2022, 42(1): 30-41. doi: 10.13394/j.cnki.jgszz.2021.0091
ZHANG Yang, ZOU Qin, LI Yanguo, LI Yuanyuan, XU Jiangbo, WANG Mingzhi. Research progress and prospect of high entropy oxide[J]. Diamond & Abrasives Engineering, 2022, 42(1): 30-41. doi: 10.13394/j.cnki.jgszz.2021.0091
Citation: ZHANG Yang, ZOU Qin, LI Yanguo, LI Yuanyuan, XU Jiangbo, WANG Mingzhi. Research progress and prospect of high entropy oxide[J]. Diamond & Abrasives Engineering, 2022, 42(1): 30-41. doi: 10.13394/j.cnki.jgszz.2021.0091

高熵氧化物的研究进展与展望

doi: 10.13394/j.cnki.jgszz.2021.0091
基金项目: 国家自然科学基金(51102205)
详细信息
    通讯作者:

    邹芹,女,1978年生,博士生导师。主要研究方向:超硬材料及高熵化合物。E-mail: zq@ysu.edu.cn

  • 中图分类号: TB34; TQ174

Research progress and prospect of high entropy oxide

  • 摘要: 高熵氧化物是由5种或5种以上等摩尔比的氧化物合成出的单相结构稳定固溶体,其具有优异的热学、磁学、电学及抗腐蚀性能等。目前的研究主要集中在对高熵氧化物现有性能的深度发掘和拓展,以及基于其优异性能在锂离子电池电极材料、介电材料、磁性材料和催化材料等方面的应用上。综述高熵氧化物的分类、制备方法以及性能特点,并对高熵氧化物的发展方向进行分析和展望。

     

  • 图  1  HEO的XRD[10]和结构图

    Figure  1.  XRD[10] pattern and structure of HEO

    图  2  5组元形成的HEO及除去某1种组元后形成的化合物的XRD图谱

    Figure  2.  XRD patterns of HEO formed by five components and chemical compounds formed after removing one component

    图  3  F - HEO的XRD[10]和结构图

    Figure  3.  XRD[10] pattern and structure of F - HEO

    图  4  (CeLaSmPrY)O粉末的TEM及SAED图[19]

    Figure  4.  TEM and SAED diagrams of (CeLaSmPrY)O powder[19]

    图  5  P - HEO的XRD[10]和结构

    Figure  5.  XRD pattern[10] and structure of P - HEO

    图  6  Sr(Zr0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3的STEM-ABF和STEM-HAADF图[23]

    Figure  6.  STEM-ABF and STEM-HAADF images of Sr(Zr0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3[23]

    图  7  S - HEO的XRD[25]和结构图

    Figure  7.  XRD pattern and structure of S - HEO

    图  8  (MgCoNiCuZn)O的取点位置和Raman光谱

    Figure  8.  Point location and Raman spectroscopy of (MgCoNiCuZn)O

    图  9  (CoCrFeMnNi)3O4的取点位置和Raman光谱

    Figure  9.  Point location and Raman spectroscopy of (CoCrFeMnNi)3O4

    图  10  (5RE0.2)2Si2O7 - Cf /SiC复合材料的结构和性能[36]

    Figure  10.  Structure and properties of (5RE0.2)2Si2O7 - Cf /SiC composites [36]

    图  11  900 ℃烧结的HEO的TEM形貌[31]

    Figure  11.  TEM images of HEO sintered at 900 ℃[31]

    表  1  高熵氧化物的发展趋势

    Table  1.   Development trend of high entropy oxides

    年份 相应进展
    2015 首次提出熵稳定的氧化物,利用固相反应法制备岩盐型(MgCoNiCuZn)O
    2016 (MgCoNiCuZn)O电学性能探究,加入Li+离子提升其电学性能
    2017 (MgCoNiCuZn)O微观结构及内部畸变机理研究,喷雾热解法制备萤石型(CeLaPrSmY)O+(Re)
    2018 喷雾热解法、湿法合成(MgCoNiCuZn)O,可用于能量储存和催化CO。稀土钙钛矿型、
    萤石型(Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)O2和尖晶石型(CoCrFeMnNi)3O4高熵氧化物的制备
    2019 研究(MgCoNiCuZn)O的热学、磁和力学性能
    2020~至今 (MgCoNiZn)1-xLixO电化学性能研究,(CoCrFeMnNi)3O4的微观结构及性能探究
    下载: 导出CSV

    表  2  HEO的力学性能[28]

    Table  2.   Mechanical properties of HEO[28]

    烧结温度
    θ / ℃
    相对密度
    ρ / %
    晶粒尺寸
    D50 / μm
    抗弯强度
    σ / MPa
    弹性模量
    E / GPa
    800 90.4 0.5 ± 0.1 243 ± 5 84 ± 4
    850 93.7 2.1 ± 0.4 282 ± 14 90 ± 6
    900 95.6 3.5 ± 0.7 323 ± 19 108 ± 5
    950 97.6 9.5 ± 1.6 233 ± 9 76 ± 6
    1 000 99.3 96.0 ± 1.7 211 ± 15 67 ± 4
    下载: 导出CSV
  • [1] YEH J, CHEN S, LIN S, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Advanced Engineering Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567
    [2] ROST C, SACHET E, BORMAN T, et al. Entropy-stabilized oxides [J]. Nature Communications,2015,6(1):1-8.
    [3] GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Scientific Reports,2016,6(1):1-10. doi: 10.1038/s41598-016-0001-8
    [4] SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nature Communications,2018,9:4980. doi: 10.1038/s41467-018-07160-7
    [5] JOHANSSON K, RIEKDHR L, FRITZE S, et al. Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition [J]. Surface and Coatings Technology,2018,349:529-539. doi: 10.1016/j.surfcoat.2018.06.030
    [6] QIN Y, LIU J, LI F, et al. A high entropy silicide by reactive spark plasma sintering [J]. Journal of Advanced Ceramics,2019,8(1):148-152. doi: 10.1007/s40145-019-0319-3
    [7] ZHANG R, GUCCI F, ZHU H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides [J]. Inorganic Chemistry,2018,57(20):13027-13033. doi: 10.1021/acs.inorgchem.8b02379
    [8] BERARDAN D, FRANGER S, DRAGEO D, et al. Colossal dielectric constant in high entropy oxides [J]. Rapid Research Letters,2016,10(4):328-333.
    [9] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics [J]. Nature Reviews Materials,2020,5(4):295-309. doi: 10.1038/s41578-019-0170-8
    [10] SARKAR A, WANG Q, SCHIELE A, et al. High-entropy oxides: Fundamental aspects and electrochemical properties [J]. Advanced Materials,2019,31(26):201806236.
    [11] BERARDAN D, FRANGER S, MEENA A, et al. Room temperature lithium superionic conductivity in high entropy oxides [J]. Journal of Materials Chemistry A,2016,4(24):9536-9541. doi: 10.1039/C6TA03249D
    [12] WANG Q, SARKAR A, WANG D, et al. Multi-anionic and-cationic compounds: New high entropy materials for advanced Li-ion batteries [J]. Energy & Environmental Science,2019,12(8):2433-2442.
    [13] WANG Q, SARKAR A, LI Z, et al. High entropy oxides as anode material for Li-ion battery applications: A practical approach [J]. Electrochemistry Communications,2019,100:121-125. doi: 10.1016/j.elecom.2019.02.001
    [14] QIU N, CHEN H, YANG Z, et al. A high entropy oxide (Mg0. 2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance [J]. Journal of Alloys and Compounds,2019,777:767-774. doi: 10.1016/j.jallcom.2018.11.049
    [15] SEGURA M, TAKAYAMA T, BERARDAN D, et al. Long-range magnetic ordering in rocksalt-type high-entropy oxides [J]. Applied Physics Letters,2019,114(12):122401. doi: 10.1063/1.5091787
    [16] ZHANG J, YAN J, CALDER S, et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide [J]. Chemistry of Materials,2019,31(10):3705-3711. doi: 10.1021/acs.chemmater.9b00624
    [17] PARK M, HWANG C. Fluorite-structure antiferroelectrics [J]. Reports on Progress in Physics,2019,82(12):124502. doi: 10.1088/1361-6633/ab49d6
    [18] SARKAR A, LOHO C, VELASCO L, et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency [J]. Dalton Transactions,2017,46(36):12167-12176. doi: 10.1039/C7DT02077E
    [19] DJENADIC R, SARKAR A, LEMENS O, et al. Multicomponent equiatomic rare earth oxides [J]. Materials Research Letters,2017,5(2):102-109. doi: 10.1080/21663831.2016.1220433
    [20] 王晓鹏, 孔凡涛. 高熵合金及其他高熵材料研究新进展 [J]. 航空材料学报,2019,39(6):1-19.

    WANG Xiaopeng, KONG Fantao. Resent development in high-entropy alloys and other high-entropy materials [J]. Journal of Aeronautical Materials,2019,39(6):1-19.
    [21] CHEN K, PEI X, TANG L, et al. A five-component entropy-stabilized fluorite oxide [J]. Journal of the European Ceramic Society,2018,38(11):4161-4164. doi: 10.1016/j.jeurceramsoc.2018.04.063
    [22] SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides [J]. Journal of the European Ceramic Society,2018,38(5):2318-2327. doi: 10.1016/j.jeurceramsoc.2017.12.058
    [23] JIANG S, HU T, GILD J, et al. A new class of high-entropy perovskite oxides [J]. Scripta Materialia,2018,142:116-120. doi: 10.1016/j.scriptamat.2017.08.040
    [24] 孟晓娟, 李丹丹, 贾翠超, 等. CH3NH3PbI3-xBrx薄膜的合成及光电性能 [J]. 燕山大学学报,2019,43(4):331-336.

    MENG Xiaojuan, LI Dandan, JIA Cuichao, et al. Synthesis and photoelectronic properties of CH3NH3PbI3-xBrx films [J]. Journal of Yanshan University,2019,43(4):331-336.
    [25] DABROWA J, STYGAR M, MLKULA, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure [J]. Materials Letters,2018,216:32-36. doi: 10.1016/j.matlet.2017.12.148
    [26] 顾俊峰, 邹冀, 张帆, 等. 高熵陶瓷材料研究进展 [J]. 中国材料进展,2019(9):855-865.

    GU Junfeng, ZOU Ji, ZHANG Fan, et al. Recent progress in high-entropy ceramic materials [J]. Materials China,2019(9):855-865.
    [27] DUPUY A, WANG X, SCHOENUNG J. Entropic phase transformation in nanocrystalline high entropy oxides [J]. Materials Research Letters,2019,7(2):60-67. doi: 10.1080/21663831.2018.1554605
    [28] SARKAR A, DJENADIC R, USHARANI N, et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides [J]. Journal of the European Ceramic Society,2017,37(2):747-754. doi: 10.1016/j.jeurceramsoc.2016.09.018
    [29] MAO A, XIANG H, ZHANG Z, et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder [J]. Journal of Magnetism and Magnetic Materials,2019,484:245-252. doi: 10.1016/j.jmmm.2019.04.023
    [30] BIESUZ M, SPIRIDIGLIOZZI L, DELL'AGLI G, et al. Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods [J]. Journal of Materials Science,2018,53(11):8074-8085. doi: 10.1007/s10853-018-2168-9
    [31] HONG W, CHEN F, SHEN Q, et al. Microstructural evolution and mechanical properties of (Mg, Co, Ni, Cu, Zn)O high-entropy ceramics [J]. Journal of the American Ceramic Society,2019,102(4):2228-2237.
    [32] 李工, 崔鹏, 张丽军, 等. 高熵合金研究现状 [J]. 燕山大学学报,2018,42(2):95-104.

    LI Gong, CUI Peng, ZHANG Lijun, et al. Current studies of high entropy alloys [J]. Journal of Yanshan University,2018,42(2):95-104.
    [33] BRAUN J, ROST C, LIM M, et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides [J]. Advanced Materials,2018,30(51):1805004. doi: 10.1002/adma.201805004
    [34] WITTE R, SARKAR A, KRUK R, et al. High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites [J]. Physical Review Materials,2019,3(3):034406. doi: 10.1103/PhysRevMaterials.3.034406
    [35] MAO A, QUAN F, XIANG H, et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder [J]. Journal of Molecular Structure,2019,1194:11-18. doi: 10.1016/j.molstruc.2019.05.073
    [36] DONG Y, REN K, LU Y, et al. High-entropy environmental barrier coating for the ceramic matrix composites [J]. Journal of the European Ceramic Society,2019,39(7):2574-2579. doi: 10.1016/j.jeurceramsoc.2019.02.022
    [37] 邹芹, 关勇, 李艳国, 等. TiAl合金及其复合材料的研究进展与发展趋势 [J]. 燕山大学学报,2020,44(2):95-107.

    ZOU Qin, GUAN Yong, LI Yanguo, et al. Research progress and development trend of TiAl alloy and its composite materials [J]. Journal of Yanshan University,2020,44(2):95-107.
    [38] MAO A, XIANG H, ZHANG Z, et al. A new class of spinel high-entropy oxides with controllable magnetic properties [J]. Journal of Magnetism and Magnetic Materials,2020,497:165884. doi: 10.1016/j.jmmm.2019.165884
    [39] 陈见, 尹周澜, 张衡中. Li、Mn掺杂对MgCoNiCuZnO5导电性能的影响 [J]. 有色金属工程,2019,9(8):1-6.

    CHEN Jian, YIN Zhoulan, ZHANG Hengzhong. Effect of Li and Mn doping on the conductivity of MgCoNiCuZnO5 [J]. Nonferrous Metals Engineering,2019,9(8):1-6.
    [40] 陈克丕, 李泽民, 马金旭, 等. 高熵陶瓷材料研究进展与展望 [J]. 陶瓷学报,2020(2):157-163.

    CHEN Kepi, LI Zemin, MA Jinxu, et al. Research progress and prospect of high-entropy ceramic materials [J]. Journal of Ceramics,2020(2):157-163.
    [41] CHEN H, FU J, ZHANG P, et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability [J]. Journal of Materials Chemistry A,2018,6(24):11129-11133. doi: 10.1039/C8TA01772G
    [42] CHEN H, LIN W, ZHANG Z, et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: Dispersion of catalysts via entropy maximization [J]. ACS Materials Letters,2019,1(1):83-88. doi: 10.1021/acsmaterialslett.9b00064
    [43] EDALATI P, WANG Q, RAZAVI-KHOSROSHAHI H, et al. Photocatalytic hydrogen evolution on a high-entropy oxide [J]. Journal of Materials Chemistry A,2020,8(7):3814-3821. doi: 10.1039/C9TA12846H
    [44] ZHENG Y, YI Y, FAN M, et al. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries [J]. Energy Storage Materials,2019,23:678-683. doi: 10.1016/j.ensm.2019.02.030
    [45] SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage [J]. Nature Communications,2018,9(1):3400. doi: 10.1038/s41467-018-05774-5
    [46] WANG J, CUI Y, WANG Q, et al. Layered high-entropy oxide structures for reversible energy storage [J]. Energy,2020,1:1-7.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  2304
  • PDF下载量:  384
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-10
  • 修回日期:  2021-11-17
  • 录用日期:  2021-12-06
  • 网络出版日期:  2022-03-17
  • 刊出日期:  2022-03-17

目录

    /

    返回文章
    返回